UAN TABU

In the Settlement History of the Libyan Sahara

Edited by Elena A.A. Garcea

Arid Zone Archaeology

Monographs 2

Edizioni all’Insegna del Giglio

2001
Arid Zone Archaeology, Monographs
Mario Liverani, Series Editor

This series collects original case studies dealing with ancient societies from the Late Pleistocene throughout historical period. Focus is on cultural transformations, economic organisation, and palaeoenvironmental reconstruction. Area of interest is the arid belt stretching from North Africa (Sahara and Nile Valley, in particular) to the Arabic peninsula up to central Asia.

Editorial Board
Mario Liverani, Mauro Cremaschi and Giorgio Manzi

Advisory Board
Marta Bandini Mazzanti, University of Modena e Reggio Emilia
Barbara E. Barich, University of Rome “La Sapienza”
Isabella Caneva, University of Rome “La Sapienza”
Ian Freestone, British Museum, London
Anthony E. Marks, Southern Methodist University, Dallas
Mary M.A. McDonald, University of Calgary
Michael S. Tite, Research Laboratory of Archaeology, Oxford

Language Consultant
Terry L. Little, Rome

Topographic Maps
Marco Caciagli, Rome
Renato Caciagli, Rome
Renato Sebastiani, Soprintendenza Archeologica di Roma

Drawings
Giovanni B. Bertolani, Rome
Leonarda De Ninno Scardala, Rome
Donatella Usai, Cagliari

Photographs
Roberto Ceccacci, Rome
UAN TABU

IN THE SETTLEMENT HISTORY OF
THE LIBYAN SAHARA

Edited by
ELENA A.A. GARCEA

with contributions by
E.S. AZZEBI, P. BARTOLOMEI, L. CHAIX, M. CREMASCHI,
A. LIVINGSTONE SMITH, A.M. MERCURI, K. NEUMANN,
A. RIZZO, G. TREVISAN GRANDI, L. TROMBINO,
D. UEBEL, P. VAN PEER

and a comment by M.M.A. MCDONALD

ARID ZONE ARCHAEOLOGY
MONOGRAPHS 2
We were all nomads once, and crossed the deserts and the seas on tracks that could not be detected, but were clear to those who knew the way. Since settling down and rooting like trees, but without the ability to make use of the wind to scatter our seed, we have found only infection and discontent.

J. Winterson
Contents

Contributors	XI
Illustrations	XIII
Tables	XVII
Commentary	Mary M.A. McDonald XIX
Acknowledgments	Elena A.A. Garcea XXIII
Chapter One	The Pleistocene and Holocene archaeological sequences Elena A.A. Garcea 1
Chapter Two	The formation processes of the stratigraphic sequence of the site and their palaeoenvironmental implications Mauro Cremaschi and Luca Trombino 15
Chapter Three	A reconsideration of the Middle Palaeolithic/Middle Stone Age in North Africa after the evidence from the Libyan Sahara Elena A.A. Garcea 25
Chapter Four	Observations on the Palaeolithic of the south-western Fezzan and thoughts on the origin of the Aterian Philip Van Peer 51
Chapter Five	Radiocarbon dates of charcoal samples from the Holocene sequence Paolo Bartolomei and Antonietta Rizzo 63
Chapter Six	The material culture from the 1960-63 excavation Elena A.A. Garcea 69
Chapter Seven	The Early and the Late Acacus material cultures after the 1960-63 and the 1990-93 excavations Elena A.A. Garcea 97
Chapter Eight	Pottery manufacturing processes: reconstruction and interpretation Alexandre Livingstone Smith 113
Chapter Nine	Combustion structures as a Late Acacus feature Elena A.A. Garcea 153
Chapter Ten	Palynological analyses of the late Pleistocene, Early Holocene and Middle Holocene layers Anna Maria Mercuri and Giuliana Trevisan Grandi 161
Chapter Eleven	Preliminary analyses of fruits, seeds and few plant macrofossils from the Early Holocene sequence Anna Maria Mercuri 189
Chapter Twelve	The cold Early Holocene in the Acacus: evidence from charred wood Katharina Neumann and Dirk Uebel 211
Chapter Thirteen	The faunal remains from the 1960-63 excavation Louis Chaix 215
Chapter Fourteen	Cultural adaptations at Uan Tabu from the Upper Pleistocene to the Late Holocene Elena A.A. Garcea 219
Bibliography	237
Arabic summary	Ebrahim Saleh Azzebi 256
Contributors

Ebrahim Saleh Azzebi
Department of Antiquities, Tripoli, Libya.

Paolo Bartolomei
ENEA, Laboratorio di Radiodatazione, Via dei Colli 16, 40136 Bologna, Italy.

Louis Chaix
Museum d’Histoire Naturelle, 1 rte de Malagnou, C.P 6434, 1211 Genève 6, Switzerland.

Mauro Cremaschi
CNR, Centro Studio Geodinamica Alpina e Quaternaria, Via Mangiagalli 34, 20133 Milano, Italy.

Elena A.A. Garcea
Dipartimento di Filologia e Storia, Università di Cassino, Via Zamosch 43, 03043 Cassino (FR), Italy.

Alexandre Livingstone Smith
Université Libre de Bruxelles, Section de Préhistoire, Africa Museum, 3080 Tervuren, Belgium.

Anna Maria Mercuri
Laboratorio di Palinologia e Paleobotanica, Orto Botanico, Università di Modena e Reggio Emilia, Viale Caduti in Guerra 127, 41100 Modena, Italy.

Katharina Neumann
J.W. Goethe-Universität, Seminar für Vor- und Frühgeschichte, Archäologie und Archäobotanik Afrikas, Grüneburgplatz 1, 60323 Frankfurt, Germany.

Antonietta Rizzo
ENEA, Laboratorio di Radiodatazione, Via dei Colli 16, 40136 Bologna, Italy.

Giuliana Trevisan Grandi
Laboratorio di Palinologia e Paleobotanica, Orto Botanico, Università di Modena e Reggio Emilia, Viale Caduti in Guerra 127, 41100 Modena, Italy.

Luca Trombino
CNR, Centro Studio Geodinamica Alpina e Quaternaria, Via Mangiagalli 34, 20133 Milano, Italy.

Dirk Uebel
J.W. Goethe-Universität, Seminar für Vor- und Frühgeschichte, Archäologie und Archäobotanik Afrikas, Robert-Mayer-Str. 1, 60054 Frankfurt, Germany.

Philip Van Peer
Laboratorium voor Prehistorie, Katholieke Universiteit Leuven, Redingenstraat 16bis, 3000 Leuven, Belgium.
Illustrations

Figure 1.1, p. 2 – View of the Wadi Teshuinat from Uan Tabu.

Figure 1.2, p. 2 – Map of Libya with the Tadrart Acacus mountain range.

Figure 1.3, p. 3 – Map of the central-southern Tadrart Acacus.

Figure 1.4, p. 4 – The Uan Tabu rock shelter.

Figure 1.5.a, b, p. 4 – a: The Round Head paintings. b: Sketch of the painting with a cattle superimposed to a Round Head anthropomorphic figure.

Figure 1.5.c, d, p. 5 – c: The Pastoral paintings. d: Sketch of the paintings with the cattle.

Figure 1.6, p. 6 – Plan of the 1960s’ and 1990s’ excavations.

Figure 1.7, p. 8 – The 1990s’ excavation down to the Aterian deposit.

Figure 1.8, p. 9 – a: Cross-section from the bottom of the wadi to the shelter. b: Plan of the site with main excavation and sondage TB-Z.

Figure 1.9, p. 10 – Western profile of the 1990s’ excavation.

Figure 1.10, p. 10 – Sketch of the western profile of the 1990s’ excavation.

Figure 1.11, p. 12 – Plan of the Aterian surface.

Figure 2.1, p. 16 – Stratigraphic sequence and micromorphological samples location.

Figure 2.2, p. 17 – Chemical and routine analyses (after Cremaschi 1998b).

Figure 2.3, p. 21 – Reconstruction of the formation processes.

Figure 3.1, p. 26 – Aterian artefacts from the 1960s’ excavation. 1: Levallois flake core; 2: Levallois point core; 3: tanged ogival point.

Figure 3.2.a, p. 27 – Profile of the whole deposit.

Figure 3.2.b, p. 27 – Profile of the Aterian deposit.

Figure 3.3, p. 28 – The top of the Aterian deposit. a: A general view; b: A close view.

Figure 3.4, p. 29 – Aterian cores. 1: prismatic opposed platform core; 2-3: Levallois flake cores.

Figure 3.5, p. 30 – Aterian cores. 1-2: Levallois flake cores; 3: Nubian core Type 1.

Figure 3.6, p. 31 – Aterian tools. 1-5: Levallois flakes.

Figure 3.7, p. 32 – Aterian tools. 1-2: Levallois blades; 3-4: Nubian points.

Figure 3.8, p. 33 – Aterian retouched tools. 1: retouched Nubian point; 2: elongated “Moustarian point”.

Figure 3.9, p. 34 – Aterian retouched tools. 1: simple convex sidescraper; 2: simple concave sidescraper; 3: double convex-concave sidescraper; 4: convergent convex sidescraper.

Figure 3.10, p. 35 – Aterian retouched tools. 1: atypical perforator; 2: natural backed knife; 3-5: notches on a flake; 6: notch on a blade.

Figure 3.11, p. 36 – Aterian retouched tools. 1: strangled denticulate; 2: denticulate on a blade; 3: denticulate on a flake; 4: denticulate on a Levallois flake.

Figure 3.12, p. 37 – Aterian retouched tools. 1-3: tanged ogival points; 4: tanged simple convex sidescraper; 5: tanged biconvex sidescraper.

Figure 3.13, p. 38 – Aterian retouched tools. 1-2: hacherex.

Figure 4.1, p. 52 – Map of the Messak Settafet with the sites in the wadis Tidwa, Imrawen, and Adroh.

Figure 4.2, p. 53 – Tidwa surface. 1-2, 5: ‘Levallois’ flakes; 3: denticulate; 4: notch.

Figure 4.3, p. 54 – Tidwa surface. 1: notch; 2: endscraper; 3: denticulate; 4-5: becs; 6: blade fragment with talon en éperon; 7-8: truncations; 9: Tidwa bec; 10: endscraper.

Figure 4.4, p. 55 – Tidwa surface. 1-2: blade fragments. Tidwa excavated. 3-8: Levallois flakes.

Figure 4.5, p. 56 – Tidwa excavated. 1: Levallois flakes; 2: retouched Levallois flake; 3: Type-2 Levallois preparation element; 4: Levallois core.

Figure 4.6, p. 57 – Tidwa excavated. 1: burin; 2-3: sidescrapers; 4: endscraper.

Figure 4.7, p. 58 – Tidwa excavated. 1: Levallois point; 2-3: blades; 4: retouched Levallois flake; 5-6: truncations; 7: Tayac point.

Figure 4.8, p. 59 – Tidwa excavated. 1-2: sidescrapers; 3: Tidwa bec; 4: burin. Imrawen. 5: crudely tanged Levallois flake; 6: Tidwa bec.

Figure 5.1, p. 65 – Distribution of calibrated data of charcoal samples.
Figure 5.2, p. 66 – Distribution of calibrated data of charcoal samples: --- most reliable value in the confidence range of 95.4%; —— most reliable value in the confidence range of 68.2%. The last three data are obtained with stronger alkaline washing.

Figure 5.3, p. 66– Effect of pre-treatment on the radiometric age BP of the same sample.

Figure 5.4, p. 66 – Calibrated age (B.C.) range of sample fractions treated with different chemical reagents.

Figure 6.1, p. 69 – Percentages of raw materials.

Figure 6.2, p. 70 – Percentages of raw materials used for flakes (including tools).

Figure 6.3, p. 70 – Percentages of raw materials used for bladelets (including tools).

Figure 6.4, p. 71 – Percentages of lithic categories.

Figure 6.5, p. 75 – Types of platforms on flakes.

Figure 6.6, p. 76 – Types of platforms on blades.

Figure 6.7, p. 76 – Types of platforms on bladelets.

Figure 6.8, p. 78 – Percentages of Late Acacus cores.

Figure 6.9, p. 78 – Percentages of raw materials used for tools.

Figure 6.10, p. 78 – Total distribution of raw materials for tools.

Figure 6.11, p. 80 – Percentages of retouched tools by main groups.

Figure 6.13, p. 82 – Late Acacus retouched tools. 1: arch-backed bladelet; 2: notched flake; 3: denticulated endscraper; 4: truncation; 5: segment; 6: trapeze with a concave side; 7: scaled piece; 8: convergent sidescraper.

Figure 6.14, p. 83 – Early Acacus retouched tools. 1: simple perforator; 2: angle burin on a fracture; 3: notched flake; 4: straight backed pointed bladelet; 5: scaled piece; 6: lozenge-haped arrowhead.

Figure 6.15, p. 88 – Lumps of ochre.

Figure 6.16, p. 88 – Handstone fragment with traces of pigment.

Figure 6.17, p. 90 – Impressed potsherds.

Figure 6.18, p. 91 – Impressed potsherds.

Figure 6.19, p. 92 – Wooden perforator.

Figure 6.20, p. 92 – Plant twisted cord.

Figure 6.21, p. 93 – Bone industry. 1: spatula; 2: burnt tool; 3: perforator.

Figure 6.22, p. 93 – Ostrich eggshell fragments.

Figure 7.1, p. 100 – Percentages of cores from 1990s’ excavation.

Figure 7.2, p. 101 – Percentages of retouched tools by main groups from 1990s’ excavation.

Figure 7.3, p. 102 – Late Acacus retouched tools. 1: straight back pointed bladelet; 2: truncation.

Figure 7.4, p. 103 – Early Acacus retouched tools. 1: simple endscraper on a flake; 2: denticulated endscraper; 3: double endscraper; 4-5: simple perforators.

Figure 7.5, p. 104 – Early Acacus retouched tools. 1: burin on a snap; 2: straight back bladelet; 3: arch-backed bladelet; 4: arch-backed bladelet with rounded base; 5: notched flake; 6: denticulated blade; 7: hachoî; 8: galet amenagé.

Figure 7.6, p. 106 – The pottery from the 1990s’ excavation.

Figure 7.7, p. 107 – Late Acacus bone perforators.

Figure 8.1, p. 130 – Potsherds (1960s’ excavation) with profiles and shaping features – Vessel 2 (T.S.: arrow indicates the orientation of thin section).

Figure 8.2, p. 131 – Potsherds (1960s’ excavation) with profiles and shaping features – Vessel 3 (T.S.: arrow indicates the orientation of thin section).

Figure 8.3, p. 132 – Potsherds (1960s’ excavation) with profiles and shaping features – Vessel 4 (T.S.: arrow indicates the orientation of thin section).

Figure 8.4, p. 133 – Potsherds (1960s’ excavation) with profiles and shaping features (T.S.: arrow indicates the orientation of thin section).

Figure 8.5, p. 134 – Potsherds (1960s’ excavation) with profiles and shaping features (T.S.: arrow indicates the orientation of thin section).

Figure 8.6, p. 135 – Potsherds (1960s’ excavation) with profiles and shaping features (T.S.: arrow indicates the orientation of thin section).

Figure 8.7, p. 136 – Potsherds (1960s’ excavation) with profiles and shaping features (T.S.: arrow indicates the orientation of thin section).

Figure 8.8, p. 137 – Potsherds (1960s’ excavation) with profiles and shaping features (T.S. and arrow indicates the orientation of thin section).

Figure 8.9, p. 138 – Potsherds (1960s’ excavation) with profiles and shaping features (T.S. and arrow indicates the orientation of thin section).

Figure 8.10, p. 139 – Binocular view. Sherd 35: shaping features; sherd 104: preferred orientation of fibres; sherd 25: imperfect joint between assembled pieces; sherd 28 (horizontal section): needle-like fibres; GAW01 (horizontal section): dung tempered vessel from Langwate (Faro, Cameroon).

Figure 8.11, p. 140 – Binocular view (vertical sections).

Figure 8.12, p. 141 – Petrographic analysis: thin sections (plain polarised light, ×40, field of view is 23 mm wide).

Figure 8.13, p. 142 – Petrographic analysis: thin sections (plain polarised light, ×40, field of view is 23 mm wide).

Figure 8.14, p. 143 – Radiographs of Group 1.

Figure 8.15, p. 144 – Radiographs of Group 1, continued.

Figure 8.16, p. 145 – Radiographs of Group 2.

Figure 8.17, p. 146 – Vessel 1 with profiles and shaping features. Radiographs of Vessel 1 (two parts).
Figure 8.18, p. 147 – Reconstruction of vessel forms: Vessel 2 (sherds 76, 140, 141); Vessel 3 (sherds 26, 30, 50, 77, 78, 90, 91, 93); Vessel 7 (sherd 16, 17); sherd 164.

Figure 8.19, p. 148 – Decorative techniques: simple impression/comb; rockerstamp/comb; rocker stamp/plain edge.

Figure 8.20, p. 149 – Decorative techniques: pivoting/bifid comb and notched plain edge.

Figure 8.21, p. 150 – Description of the orientation of inclusions and pores.

Figure 9.1, p. 154 – A combustion structure.

Figure 9.2, p. 155 – Partial profile of the 1990s’ excavation with combustion structures.

Figure 9.3, p. 156 – Section of Structure 6a.

Figure 9.4, p. 158 – a: profile of Structure 18a-20a at Layer 19a; b: profile of Structure 18a-20a at Layer 20a.

Figure 10.1, p. 163 – Location map of Uan Tabu rock shelter and stratigraphy of the sequence sampled for pollen analyses (after Cremaschi 1998b, modified): a - Wadi Teshuinat; b - geological cross section (PS0=pollen sample of dung in a niche of the wall); c - stratigraphic sequence (from PS20 to PS1, pollen samples in the sequence).

Figure 10.2, p. 166 – Percentage pollen diagram, selected taxa.

Figure 11.1, p. 194 – Maximum length of charred grains and uncharred spikelets measured in three samples: A, B: MS1/Layer 3; C: MS3/Layer 5; D: MS5/Layer 7.

Figure 11.2, p. 201 – Grasses and other plant remains from Uan Tabu, all uncharred: A. Brachiaria type B, one floret from the ventral (1) and dorsal (2) side; B. Urochloa type, one floret from the ventral (1) and dorsal (2) side; C. Cenchrus sp. – involucre; D. Boraginaeace type I – fruit; E. Tamarix aphylla (L) Karst., twig.

Figure 13.1, p. 216 – 1: fragments of a denticulated rib of a small ruminant; 2: rib of a large ruminant used as polisher. (Photographs by Claude Ratton, Museum of Natural History, Geneva).

Figure 13.2, p. 217 – 1: fragment of a perforator made in a long bone from a large ruminant; 2: bevel made with a small ruminant long bone; 3: fragment of gazelle’s metapodial with tracks of utilization. (Photographs by Claude Ratton, Museum of Natural History, Geneva).
Table 1.I, p. 11 – Depths of each layer from the present surface at the North end (square 1A) and in the middle of the trench (squares 3A-3D).

Table 1.II, p. 12 – Stratigraphic correlation between the 1960-63 and the 1990-93 excavations.

Table 1.III, p. 13 – Radiocarbon dates.

Table 2.I, p. 17 – Point counting quantitative results; values in percent with normalisation (according to Van Der Plas and Tobi 1965)

Table 3.I, p. 29 – Percentages of cores.

Table 3.II, p. 32 – Percentages of Levallois and non-Levallois flakes and blades.

Table 3.III, p. 33 – Number of retouched tools.

Table 4.II, p. 55 – Typological list of Tidwa Levels 2 and 3.

Table 5.I, p. 65 – Radiometric and calibrated ages from charcoal samples (The calibration curves are from INTCAL98, the calibration program is OxCal v2.18 cub r:4 sd:12).

Table 5.II, p. 67 – Comparison between samples from adjacent layers analysed with standard and strong treatment.

Tables 6.I.a, b, p. 70 – Percentages of raw materials and lithic categories.

Tables 6.II.a, b, p. 72 – Percentages of primary, secondary, and tertiary flakes.

Tables 6.III, p. 72 – Percentages of primary, secondary, and tertiary blades.

Tables 6.IV.a, b, p. 72 – Percentages of primary, secondary, and tertiary bladelets.

Tables 6.V.a, b, p. 74 – Means of flakes (in mm).

Tables 6.VI, p. 74 – Means of blades (in mm).

Tables 6.VII.a, b, p. 74 – Means of bladelets (in mm).

Tables 6.VIII.a, b, p. 74 – Means of cores (in mm).

Tables 6.IX.a, b, p. 74 – Means of tools on a flake (in mm).

Tables 6.X.a, b, p. 74 – Means of tools on a bladelet (in mm).

Tables 6.XI.a, b, p. 75 – Percentages of raw materials and platform types on flakes.

Tables 6.XII.a, b, p. 76 – Percentages of raw materials and platform types on bladelets.

Tables 6.XIII, p. 77 – Percentages of raw materials and core types.

Tables 6.XIV, p. 79 – Quantities of Late Acacus retouched tools.

Tables 6.XV, p. 79 – Quantities of Early Acacus retouched tools.

Table 6.XVI, p. 87 – Quantities of Late Acacus grindstones.

Table 6.XVII, p. 88 – Quantities of Early Acacus grindstones.

Table 6.XVIII, p. 89 – Quantities of colouring minerals.

Table 6.XIX, p. 90 – Quantities and percentages of potsherds (values in parenthesis refer to rimsherds and are included in the total number of sherds).

Table 6.XX, p. 93 – Quantities of ostrich eggshell beads and fragments.

Tables 7.I.a, b, p. 98 – Percentages of raw materials and lithic categories from the 1990s’ excavation.

Tables 7.II.a, b, p. 100 – Percentages of raw materials and cores from the 1990s’ excavation.

Tables 7.III, p. 102 – Frequencies of retouched tools from the 1990s’ excavation.

Table 8.I, p. 115 – Reference to square/layer and sherd number.

Table 8.II, pp. 116-118 – Compositional groups. Reference to level; Sherd number; Vessel attribution (with actual refitting marked by a *); Fabric number; T.S.P. attribution (thin section petrography); Characteristics of mineral and organic inclusions. Key for inclusions: Ab: Abundance (ab: abundant; com: common; occ: occasional); Texture (f: fine; med: medium; c: coarse); Sphericity (low; med: medium; hi: high); Ang: Angularity (v. ang: very angular; w. rnd: well rounded); Type of organic inclusion (flat; tub: tubular); Size (lg: large; med: medium; sm: small); Pref. or.: Preferred orientation (str: strong; hz: horizontal).

Table 8.III, p. 120 – Petrographic results (sherd 141 was sectioned twice for control). Fl: flaser; Grt: granite. Relative abundance of inclusions (visual estimates): +++++; very abundant; +++: abundant; ++: common; +: present; tr: trace.

Table 8.IV, pp. 123-125 – Shaping features and techniques (POF: Preferred Orientation of Fibres).

Table 8.V, pp. 126-128 – Decorative techniques with tools, elements and motifs sorted according to Vessel attribution (Shards 34, 46, 55, 60, 61, 64, 101, 102, 134, 139 are unclassifiable and therefore not included in this Table).

Table 8.VI, p. 151 – Summary of technical diversity (sup: superimposed; ves: vessel; sh: sherd).

Table 8.VII, p. 151 – Spatial distribution of the 7 manufacturing processes.

Table 9.I, p. 159 – Presence of charcoal samples.

Table 10.I, pp. 167-169 – Pollen types are listed in alphabetical order by Family; percentage pollen spectra of eleven samples were calculated; the brackets include number of pollen counted in the five samples where less than ten pollen grains were observed. Labels of categories are: (1)
column of Habitus/Distribution includes a – Habitus (8 categories): T = Trees; T/S = taxa mainly including trees but also shrubs; S = shrubs; S/T = shrubs/trees; S/H = shrubs/herbs; H = herbs; H/S = herbs/shrubs; H/S/T = herbs/shrubs/trees. In the spectra, T/S were calculated as trees; S/T and S/H as shrubs; H/S and H/S/T as herbs. b – Distribution (8 categories): o = plants growing in Northern and Central Sahara (Ozenda 1958; including ss = saharan/saharan-sindian/saharan-mediterranean; sd = soudan-deccanian; m = Mediterranean; t = tropical; u = ubiquitous); f = plants living in the Fezzan (Corti 1942; including f* = plants personally observed in the Fezzan and not listed in the previous flora); t = tropical plants; h = holarctic (sensu Maley 1980); (2) column of Ecology/Uses includes c – Ecology (5 categories): ps = psammophilous plants; I = hygrophilous woody plants; i = hygrophilous herb plants; id = hydrophilous plants; r/n = ruderal or nitrophilous plants; d = Anthropogenic Indicators (5 categories): A = food/manufact/fire/soap; gz = good pasture, grazing; med = medical uses; tox/med = toxic/medicinal plants; col = used for colours/tannins. Total Anthropogenic Indicators were AI = A + gz + med + tox/med + col + r/n; d – Anthropogenic Indicators (5 categories): A = food/manufact/fire/soap; gz = good pasture, grazing; med = medical uses; tox/med = toxic/medicinal plants; col = used for colours/tannins. Total Anthropogenic Indicators were AI = A + gz + med + tox/med + col + r/n; e – Other categories (1 category), i.e. the sum of sc = scented plants.

Table 10.II, pp. 170-171 – Pollen spectra of the UTB2b Pollen Sub-zone, Early Holocene–Late Acacus sequence. Labels of the Roles of taxa are: (1) Abundance of each Family and pollen type in the sample where it reached the maximum value: L = Leading taxon (Leading in each sample and in the mean of the sub-zone were circled); E = Escort taxon; M = Minor taxon; (2) Frequency of each Family and pollen type in the sub-zone: W = Widespread; U = Ubiquitous; F = Frequent; I/E = Infrequent/Exclusive.

Table 10.III, p. 184 – Selected pollen data from Uan Muhuggiag-Middle Holocene, Pastoral (UM1, around 6900 years bp) and Uan Tabu-Early Holocene, Late Acacus (UTB2b, around 8700 years bp); concentration was expressed as pollen/gram; D = Dry sum, W = Wet sum (see paragraph 2.7).

Table 10.IV, p. 185 – Large-sized grass pollen measured in UTB2b-Early Holocene, Late Acacus (samples PS1, PS2 and PS11) (see text 3.2): Dm = maximum diameter; dm = diameter which is perpendicular to Dm; exines = v (verrucate), s (scabrate).

Table 11.I, p. 191 – Results of macrofossil analyses carried out at archaeological sites of the Tadrart Acacus. Very uncertain or undetermined macrofossil taxa were omitted (nomenclature mainly according to Wasylikowa 1992b).

Table 11.II, p. 192 – List of samples collected for macrofossil analyses (seeds, fruits, twigs) during the excavation of 1992.

Table 11.III, pp. 197-199 – Results of macrofossil analyses (seeds, fruits, twigs).

Table 12.I, p. 212 – Anthracological samples.

This book is the latest in a series of monographs to be published by members of the Italo-Libyan Joint Mission on their work in and around the Tadrart Acacus in South-Western Libya. The project, which initially focussed on the remarkable rock art of the area and its archaeological context, has since blossomed into a multi-disciplinary investigation of the archaeology and palaeoenvironment of the Central Acacus massif, and of some 6000 km² atop the nearby Messak Settafet plateau and on the dune-covered lowlands around them. The Tadrart Acacus is the easternmost of the Central Saharan mountain ranges, and one of the few locations within that volatile area in which it is still safe to work. This rugged, arid environment provides an unusually rich record for ge-archaeologists, with caves and rockshelters that contain deeply stratified deposits, and often extraordinary preservation of organic and other remains.

Addressing this record, members of the Mission have identified some 450 sites throughout the region, ranging in age from the Early Stone Age to the Late Pastoral (Cremaschi and di Lernia 1998b). They have focussed particularly on the Holocene portion of the sequence, applying up-to-date, indeed often pioneering, methods to recover and analyse data on the changing palaeoenvironment and human responses to it. In the process they have defined a sequence of five phases marked by varying settlement systems and mobility patterns, extractive, and then food-producing economies, ties beyond the region, and inferred ritual, all against a backdrop of changing environmental conditions through the Early and Mid-Holocene.

The strengths of that approach are clearly evident in this volume, which focuses on the rockshelter of Uan Tabu in the Central Acacus. A trench dug in the 1960s by S. Tiné was expanded in the early 1990s under the direction of E. Garcea and was taken down to bedrock, revealing a sequence stretching from the Upper Pleistocene to the Late Holocene. Three main phases of occupation were identified within the 2.5 metres of deposit: one from the Upper Pleistocene attributed to the Aterian unit, and two from the Early Holocene, termed the Early and Late Acacus phases. In addition, surface evidence within the shelter attested to occupations throughout the Mid-Holocene by pastoralist groups.

This volume contains reports by twelve specialists on such topics as the processes forming the sedimentary sequence at Uan Tabu, the archaeological sequence, the position of the Uan Tabu Aterian and related assemblages within the Middle Palaeolithic/Middle Stone Age of North Africa, the artefact categories from the Early and Late Acacus occupations, pottery manufacturing processes, combustion structures of the Late Acacus, and the information gleaned from various palaeobotanical studies concerning climatic change and human exploitation of plants and animals throughout the Early and Mid-Holocene. The editor mentions that there was a great deal of discussion and circulation of manuscripts amongst contributors during the preparation of the volume. The result is a coherent, detailed and well-integrated account of varying palaeoenvironments and human adaptations in the Central Acacus from the Upper Pleistocene through to the Late Holocene.

Three aspects of this work might be of particular interest to archaeologists working beyond the southwestern Fezzan. They include the evidence from Uan Tabu and elsewhere in the area bearing on the later Upper Pleistocene archaeological sequence for North Africa, the kinds of information to be gleaned from studies of site organization in Uan Tabu in the Late Acacus, and the remarkably detailed picture generated by the palaeobotanists concerning changing environments and human adaptations through the Early and Mid-Holocene.

The Aterian is perhaps the best-known Upper Pleistocene technocomplex in the Sahara, but as explained here by Garcea and Van Peer, many questions remain concerning the origin, dating, and even the nature of the unit. The discovery at the bottom of the Uan Tabu deposit of a nearly metre-deep unit containing Aterian material was thus particularly significant. From this unit comes the only unquestionable date for the Aterian from the Central Sahara (an OSL date of 61,000 BP from near the top of the deposit), together with pedological evidence for a climate almost as arid as the present one. Chipped stone was the only category of archaeological evidence to survive in the deposit. However, by considering raw material procurement patterns and lithic technology, as well as the tool typology (which had been published elsewhere), Garcea detects two different stratigraphic assemblages within the sequence, and is able to suggest that, for most of that span, the shelter served as a habitation site for what may have been seasonally sedentary groups.

The Aterian deposits at Uan Tabu are cut at the top by an erosional unconformity, and then covered by material of Holocene age. Van Peer presents evidence from elsewhere in the region, though most of it from surface scatters, suggesting a more complex sequence for the later Upper Pleistocene, with assemblages both preceding and post-dating the Aterian. At Uan Afuda cave not far from Uan Tabu, a very small assemblage was found within a fossil dune formation similar to the latter’s Aterian deposits. On technological grounds, the Uan Afuda material is considered to predate slightly the Uan Tabu Aterian. Two other small assemblages from the Messak Settafet, while quite different from the Uan Tabu Aterian, are thought, partly on taphonomic grounds, to be roughly contemporary with it.
Even more intriguing, perhaps, is the evidence for post-Aterian material. Abundant palaeoenvironmental evidence indicates that much of the Sahara was hyperarid during the Late Pleistocene after c. 60,000 BP, while the paucity of the archaeological record would suggest widespread abandonment of the desert. Nothing had been recorded for the Central Sahara for that period, and claims for Late Pleistocene material elsewhere, such as the Khargan or Sheikh Mabruk unit of the Egyptian oases, remain controversial.

Against that background, Van Peer’s description of two possible “Late Palaeolithic” assemblages is very interesting. Tidwa-surface and Imrawen 1A, 1B, and 2A are both small collections from surface scatters on the Messak Settafet. In each assemblage, both blades and flakes were produced, the latter using a Levallois reduction strategy similar to one found in the Níle Valley Late Palaeolithic. The use here of en éperon butt preparation on laminar elements was also common in the European Magdalenian. Garcea points out that the distinctive treatment of platforms and of the bulbar area of flakes, and the many smallish blanks with steep marginal retouch that are found in these two assemblages, are also prominent features of Caton-Thompson’s Khargan industry. In Dakhleh Oasis, there is a growing body of evidence to suggest that the Khargan and closely related groups (collectively called the Sheikh Mabruk Cultural Unit) are (contra Caton-Thompson) post-Aterian, and indeed might be dated fairly late within the long Late Pleistocene hyperarid period (Wiseman 1999). It now appears that there may be at least one other cultural unit that falls between the Dakhleh Aterian and the Sheikh Mabruk (Wiseman 1998). The picture remains fragmentary, and as Van Peer observes, good stratified material is needed. Still, there is evidence to suggest that humans continued to inhabit the desert during the Late Pleistocene period of hyperaridity, at least in certain favoured localities such as the large oases and in mountainous terrain.

The deposits of the Uan Tabu shelter pertaining to the Late Acacus phase of the Early Holocene contained a remarkable feature: the remains of a wooden hut. The structure was within the trench excavated in the 1960s, but the finds had never been published. Garcea analyses this artefactual material, in the case of the lithics considering the operational sequence, the choice of raw material, core reduction strategies and so on, as well as the tool kit. She then factors in the spatial distribution of the various categories of artefact, together with the distribution of the material from the 1990s excavation of an area outside of the hut. The result is a remarkably detailed picture of site organization in the Uan Tabu Late Acacus. It appears, for instance, that much of the knapping and grinding, and the jobs requiring perforators and denticulates, took place away from the hut, but activities involving a variety of other stone tools (many of top quality material), the pottery, and the more fragile artefacts in organic materials, were carried out within the structure, indeed mostly on its left side. Garcea then combines the evidence from Uan Tabu with that from other Late Acacus excavated sites and survey data to postulate a settlement system for that phase that was largely focussed on the mountains, with relatively sedentary groups occupying sites showing well-defined activity areas, and exploiting a relatively wide variety of plant and animal resources.

This detailed reconstruction of Late Acacus site organization and the settlement system in turn throws the Early Acacus adaptation into sharper relief. Groups in this earlier phase are smaller, more mobile, exploiting both mountains and lowlands, and have a relatively specialized tool kit to exploit a limited range of resources, particularly the Barbary sheep.

The same extraordinary preservation of organic remains that makes possible the detailed reconstruction of site organization and settlement systems for the Early and Late Acacus, is also exploited by the palaeobotanists to detail changes in climate and subsistence patterns throughout the Early and Mid-Holocene. By studying the pollen and carpological (fruit and seed) remains from the archaeological sequence, Mercuri and her colleagues are able to document a surprisingly complex and sophisticated subsistence pattern within what remained, through the Late Acacus, essentially an extractive, rather than a food producing economy.

The climate, as revealed through the pollen from Uan Tabu and other excavated sites, was relatively wet in the Late Glacial (c. 14,000-11,000 BP) and became gradually drier (but with reduced seasonality) through the Early Holocene (9800-8600 BP), and then abruptly more arid with the start of the Mid-Holocene. Through the Early Holocene, the vegetal landscape evolved from a rather monotonous savannah during the Early Acacus phase, to drier but more diversified conditions for the Late Acacus, and then steppe-like to desert conditions for the Pastoral phases through the Mid-Holocene.

In the Early Acacus, relatively small groups exploited the available resources, particularly grasses and Panicaceae, mostly for human food, and mostly on a seasonal basis, only occasionally storing any of the material in the rockshelter. In the Late Acacus, the larger, more sedentary groups exploited the now diverse local resources somewhat more intensively. Much of the deposit in Uan Tabu consisted of ash and unburned vegetal matter. A broad spectrum of plants was used for food, fodder, bedding and construction, and possibly also for medicine, cosmetics and ritual. Of particular interest are various wild cereals that seem to have been stored and roasted as needed, and cattails, apparently used as both food and roofing for the hut. In general, the Late Acacus record suggests the harvesting, storage, processing, selection, and caring for desirable species, together with the transmission of botanical knowledge through space from site to site, and across many generations, but without actual domestication (the manipulating of genetic material) or the switch to agriculture.

A similar picture of intensification without domestication emerges from the Early Holocene record on animal exploitation. Both the palaeobotany reviewed above, and geomorphological evidence compiled by
Cremaschi and Trombino, suggest that animals were penned in the rockshelter. In the Early Acacus layers, where the faunal remains consist entirely of Barbary sheep, fragmentary coprolites of ruminants were detected in the deposit. The evidence is stronger for the Late Acacus, where caprovid dung, the storage of what appears to be fodder, and signs of heavy trampling, all suggest the holding of animals, presumably for delayed use. The evidence from Uan Tabu thus supports the argument, already published (di Lernia 1998a, 1999d), for the management of Barbary sheep in both Early and Late Acacus levels at the nearby Uan Afuda cave, and at other sites in this part of North Africa.

In summary, the contributors to this volume use sophisticated techniques of recovery and analysis to compile a vivid picture of changing palaeoenvironments and human adaptations in the south-western Fezzan from the Upper Pleistocene to the Late Holocene. The work can, among other things, serve as a sobering reminder to those of us who work on often badly deflated sites elsewhere in the Sahara, of how complex and finely nuanced the archaeological record can be, where conditions of preservation are such as occur in the deeply stratified sites of the Central Acacus.

Mary M.A. McDonald
University of Calgary