This book is dedicated to the loving memory of the dear friends who have shared our glorious days in Farafra and who are no longer with us, Giampaolo, Ahmed Gamal, Ahmed Abdurabbo
FROM LAKE TO SAND

THE ARCHAEOLOGY OF FARAFRA OASIS
WESTERN DESERT, EGYPT

edited by

Barbara E. Barich, Giulio Lucarini
Mohamed A. Hamdan and Fekri A. Hassan
Front-Cover
Panoramic view of El-Bahr basin. Photo for the courtesy of Carlos de la Fuente

English translations
Erika Louisa Milburn
Sarah Court

Volume published with funds from the Ministry of Universities and Research (Italian National PRIN Programme) and the Dipartimento di Scienze dell’Antichità, Sezione di Preistoria e Protostoria, Sapienza University of Rome.
Table of Contents

List of Contributors ... XI
List of Figures ... XII
List of Tables ... XX
Foreword. ... XXII
Editorial note and Acknowledgments ... XXIII

INTRODUCTION
1. Farafra Oasis and the Archaeological Project. 3
 Barbara E. Barich
 1. The land and the people .. 3
 2. The Archaeological Project ... 9
 3. Safeguarding the oasis: site preservation and protection 18
 4. Conclusions. ... 18

I – ARCHAEOLOGICAL AND HISTORICAL FRAMEWORK
2. Hints at Middle Stone Age occupation in the Farafra Oasis 25
 Philip Van Peer
 1. Introduction. ... 25
 2. The site near the Mission’s Camp in Hidden Valley 25
 3. The Hidden Valley Plateau Area .. 28
 4. The Sheikh el Obeiyid area ... 35
 5. The Ain Dalla road .. 36
 6. Conclusion ... 37
 Addendum by B.E. Barich ... 38

3. Early to mid Holocene archaeology of the Egyptian Western Desert 39
 Barbara E. Barich
 3. Resuming land occupation in the early Holocene. 39
 2. Early Holocene archaeology at Farafra: the sites of Ain e-Raml and Abu Kasseb ... 41
 3. The transition towards the mid Holocene at Nabta 47
 4. Occupation sites in the Dakhla oasis 53
 5 Conclusion ... 54

4. An oasis through time: integrating historical and archaeological sources on Farafra Oasis since Pharaonic period to the present ... 55
 Mario Cappozzo, Augusto Palombini
 1. From the origins to the New Kingdom. 55
 2. The Ptolemaic and Late Period ... 57
 3. From the Middle Ages to the present 58

II – BEDROCK GEOLOGY AND GEOMORPHOLOGY
5. Desert and oasis: geomorphology and geomorphic evolution. 63
 Fekri A. Hassan, Mohamed A. Hamdan, Abdelmoneim A. Mahmoud
 1. Origins of the Farafra depression. 63
 2. Bedrock geology .. 63
 3. Aeolian landforms .. 69
 4. Playa sediments .. 70
 5. Conclusion: depositional history and palaeoclimate. 78
III – THE WADI EL OBEIYID PLAYA: EL-BAHR

6. Sedimentological characteristics and geomorphic evolution of the Holocene playa of Wadi el Obeiyid. ... 81
 Mohamed A. Hamdan
 1. Introduction. .. 81
 2. Stratigraphy and sedimentological characteristics 82
 3. Early and middle Holocene palaeoenvironmental and palaeoclimatic implications 90
 4. Late Holocene geomorphic evolution of Wadi el Obeiyid playa ... 91

7. The El-Bahr/Wadi el Obeiyid playa: its general setting and the main archaeological features. 101
 Barbara E. Barich
 1. Introduction. .. 101
 2. Topography and archaeological features 103
 3. The mid Holocene horizon: the main occupation phase 106
 4. Excavation at the BH-90-5C sheltered site: the late occupation phase 123
 5. Main typological and technological characteristics 125

8. Workshop activities: Site El-Bahr 2A ... 129
 Barbara E. Barich
 1. Introduction. .. 129
 2. The site ... 129
 3. The lithic assemblage .. 131
 4. Discussion ... 139

 Marina Gallinaro
 1. Introduction. .. 141
 2. The Steinplätze .. 141
 3. Excavated structures .. 143
 4. Spatial analyses .. 145

IV – HIDDEN VALLEY IN THE WADI EL OBEIYID

10. Geology of the Holocene playa sediments of Hidden Valley, Wadi el Obeiyid, Farafra ... 151
 Mohamed A. Hamdan
 1. Introduction. .. 151
 2. Methods of study .. 151
 3. Bedrock geology and geomorphology 151
 4. Lithostratigraphy .. 154
 5. Sedimentology of the Holocene sediments 163
 6. Depositional environment .. 164
 7. Geological evolution of the Hidden Valley playa 164
 8. Conclusion ... 165

11/1. Hidden Valley: a 7000 year-old village in Wadi el Obeiyid. ... 167
 Barbara E. Barich
 1. Introduction – The archaeological investigation 167
 2. Stratigraphy and features ... 169
 3. The Hidden Valley village: phases of occupation and contextual analysis 203

11/2. The excavated artefacts from Hidden Valley village: 1990-2001 209
 Barbara E. Barich
 1. Introduction. .. 209
 2. Surface. .. 211
 3. Layer I. .. 217
 4. Layer II .. 218
 5. Layer IIIA .. 225
 6. Layer III ... 228
 7. Layer IIIA .. 242
 8. Technological features: an overview from the examined sectors 243
11/3. The excavated artefacts from sectors B/4, D/2, E/1 at Hidden Valley
(2003 and 2005 field seasons) ... 251
 Giulio Lucarini
 1. Introduction ... 251
 2. Surface ... 251
 3. Layer I .. 255
 4. Layer II ... 255
 5. Layer II A ... 256
 6. Layer III ... 260
 7. Techno-typological and functional considerations 261

11/4. The bifacial products from Hidden Valley and neighbouring areas in Wadi el Obeiyid ... 265
 Giulio Lucarini
 1. The study area .. 265
 2. The bifacial collections .. 267
 3. The bifacial tradition of the Wadi el Obeiyid region 282

11/5. Large stone tools from the Hidden Valley village and basin .. 285
 Giulio Lucarini
 1. Introduction: materials and research methodology 285
 2. Technology and raw material ... 287
 3. The Hidden Valley village assemblage 288
 4. The assemblage from the Hidden Valley basin 294

11/6. Ostrich eggshell products from Hidden Valley village, Farafra Oasis –
 Contributions from technological analysis 301
 Emanuela Cristiani
 1. The archaeological context .. 301
 2. Methodology and materials analysed 302

11/7. Hearths of the Hidden Valley area, Farafra Oasis ... 307
 Marina Gallinaro
 1. Introduction ... 307
 2. Hearths in the main Hidden Valley area 308
 3. Hidden Valley 2 .. 310
 4. Discussion .. 310

11/8. Technological and functional approach to the bone artefacts from Hidden Valley village,
 Farafra Oasis ... 315
 Giacoma Petrullo
 1. Introduction ... 315
 2. Methodology ... 315
 3. Analysis of the archaeological artefacts 319
 4. Conclusion ... 320

11/9. The Hidden Valley technological complex – An overview .. 321
 Barbara E. Barich, Giulio Lucarini
 1. Flaked stone production .. 321
 2. Ground stone tools .. 325
 3. Ostrich eggshell production .. 326
 4. Bone artefacts ... 327
 5. Discussion: main points of comparison outside the Farafra depression .. 327

V – FOOD RESOURCES AT HIDDEN VALLEY

12. Plant food resources at Hidden Valley, Farafra Oasis ... 333
 Ahmed G. Fahmy
 1. Introduction ... 333
 2. Materials and methods ... 334
 3. Results .. 334
 4. Morphology of plant macro remains 336
 5. Synthesis .. 341
 6. Discussion and conclusions ... 342
List of Contributors

DONATELLA BARCA
Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria.
E-mail: d.barca@unical.it

BARBARA E. BARICHI
Dipartimento di Scienze dell’ Antichità, Sapienza University of Rome, and ISMEO.
E-mail: barbara.barichi@mclinknet.it

GIORGIO BELLUOMINI
Istituto per le tecnologie applicate ai beni culturali, National Council of Research.
E-mail: giorgio.belluomini@itabc.cnr.it

ZBIGNIEW M. BOCHENSKI
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences.
E-mail: bochenski@isez.pan.krakow.pl

MARIO CAPPozzo
Reparto Antichità Egizie e del Vicino Oriente, Musei Vaticani.
E-mail: ao2.musei@scv.va

LANFREDO CASTELLETTI
Laboratorio di Archeobiologia dei Musei Civici di Como, and Dipartimento di Storia, Archeologia e Storia dell’Arte, UCSC International of Milan.
E-mail: lanfredo.castelletti@gmail.com

MICHELA COTTINI
Laboratorio di Archeobiologia dei Musei Civici di Como, and ARCO – Cooperativa di Ricerche Archeobiologiche, Como.
E-mail: archeobotanica@alice.it

EMANUELA CRISTIANI
McDonald Institute for Archaeological Research, University of Cambridge.
E-mail: ec484@cam.ac.uk

AHMED G. FAHMY
Department of Botany, Helwan University, Cairo.

MARINA GALLARO
Dipartimento di Storia, Scienze dell’Uomo e della Formazione, University of Sassari.
E-mail: mgallinaro@uniss.it

MARIA CARMELA GATTO
School of Archaeology and Ancient History, University of Leicester.
E-mail: mcg25@le.ac.uk

ACHIEL GAUTIER
Department of Geology and Soil Science, Research Unit Palaeontolgy, Universiteit Gent.
E-mail: achiel.gautier@ugent.be

MOHAMED A. HAMDAN
Department of Geology, Cairo University.
E-mail: hamdانونahmed@hotmail.com

FEKRI A. HASSAN
Institute of Archaeology, University College London, and Université Française d’Égypte.
E-mail: f.hassan@ucl.ac.uk

KAZIMIERZ KOWALSKI†
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences.

GIULIO LUCARINI
McDonald Institute for Archaeological Research, University of Cambridge, and ISMEO.
E-mail: gl374@cam.ac.uk

ABDELMONEIM A. MAHMOUD
Department of Biology and Geology, Ain Shams University, Cairo.
E-mail: a_moneimm@hotmail.com

LUIGIA MANFRA
Dipartimento di Scienze della Terra, Sapienza University of Rome.
E-mail: luigia.manfra@uniroma1.it

EMANUELE MARIOTTI
University of Siena, currently independent researcher.
E-mail: emanuelemariotti75@gmail.com

ITALO MARIA MUNTONI
Centro Operativo per l’Archeologia della Daunia, Soprintendenza per i Beni Archeologici della Puglia.
E-mail: italomaria.muntoni@beniculturali.it

GIUSEPPINA MUTRI
McDonald Institute for Archaeological Research, University of Cambridge.
E-mail: gm461@cam.ac.uk

AUGUSTO PALOMBINI
Virtual Heritage Lab, Istituto per le tecnologie applicate ai beni culturali, National Council of Research.
E-mail: augusto.palombini@itabc.cnr.it

GIACOMA PETRULLO
Scuola Dottorale di Archeologia, Sapienza University of Rome.
UMR 7055 - Préhistoire et Technologie, Université Paris Ouest Nanterre la Défense.
E-mail: minapetrullo@libero.it

BARBARA RZEBIK-KOWALSKA
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences.
E-mail: rzebik@isez.pan.krakow.pl

NAHILA A. SHALLAY
Department of Geology, Cairo University.
E-mail: shallalynahla@yahoo.de

ERHARD SCHULZ
Institute of Geography, Würzburg University.
E-mail: erhard.schulz@uni-wuerzburg.de

ZBIGNIEW SZYNDLAR
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences.
E-mail: szyndlar@isez.pan.krakow.pl

PHILIP VAN PEER
Department of Archaeology, Katholieke Universiteit Leuven.
E-mail: philip.vanpeer@ees.kuleuven.be

XI
List of Figures

Fig. 1.1. Western Desert, Egypt. Landsat image of the Farafra depression, p. 4.
Fig. 1.2. Western Desert, Egypt. The landscape at Abu Mingar in the southwestern region of the Farafra depression, p. 5.
Fig. 1.3. Farafra Oasis, Western Desert. The Northern Plateau seen from Wadi el Obeiyid, p. 5.
Fig. 1.4. Western Desert, Egypt. a-b: chalk aeolian sculptures in the White Desert (photo courtesy of C. de la Fuente), p. 6.
Fig. 1.5. Western Desert, Egypt. a-b: palm trees at Ain el a-b, p. 7.
Fig. 1.6. Farafra Oasis, Western Desert. Ruins of the Qasr Farafra Medieval fortress, p. 7.
Fig. 1.7. Farafra Oasis, Western Desert. The old mosque of Qasr Farafra, p. 8.
Fig. 1.8. Farafra Oasis, Western Desert. Modern pottery manufactured in traditional style, p. 8.
Fig. 1.9. Farafra Oasis, Western Desert. a-b: Saharan architecture styles in the oasis, p. 9.
Fig. 1.10. Farafra Oasis, Western Desert. The art of spinning, p. 10.
Fig. 1.11. Farafra Oasis, Western Desert. a: landscape with yardangs at Ain e-Raml; b: flat basin at Ain Kifrein, p. 11.
Fig. 1.12. Farafra Oasis, Western Desert. The course of Wadi el Obeiyid north Farafra, p. 12.
Fig. 1.13. Farafra Oasis, Western Desert. Wadi el Obeiyid Cave 1 (Farafra Cave) seen from the wadi bed, p. 12.
Fig. 1.14. Farafra Oasis, Western Desert. 3D reconstruction of the Hidden Valley basin (by G. Fratini and F. Moriconi), p. 13.
Fig. 1.15. Farafra Oasis, Western Desert. Sheikh el Obeiyid: the finger, p. 14.
Fig. 1.16. Farafra Oasis, Western Desert. A slab-stone structure in the Sheikh el Obeiyid settlement, p. 15.
Fig. 1.17. Farafra Oasis, Western Desert. The entrance of Wadi el Obeiyid Cave 2 (photo courtesy of C. de la Fuente), p. 16.
Fig. 1.18. Farafra Oasis, Western Desert. a-b: the entrance and the inner chamber of Sheikh el Obeiyid Cave, p. 17.
Fig. 1.19. Farafra Oasis, Western Desert. a-b: view of the internal arrangement in the Visitor Centre with Abdurabbo Abdel Nour in the foreground, p. 19.
Fig. 2.1. Farafra, Wadi el Obeiyid. a: map of the Wadi el Obeiyid region with the 1999 (in rectangle) and 2003 survey areas; b: enlargement of the 1999 survey area with the GPS-recorded locations (topographical features not to scale), p. 26.
Fig. 2.2. Farafra, Wadi el Obeiyid. Hidden Valley, Camp Site. (Scale 2:3), p. 27.
Fig. 2.3. Farafra, Wadi el Obeiyid. Hidden Valley Plateau, Location 18/11/3. (Scale 2:3), p. 28.
Fig. 2.4. Farafra, Wadi el Obeiyid. Hidden Valley Plateau, Location 18/11/3. (Scale 1:2). Morphological Levallois endproduct produced during reduction of core in fig.2.3, l, p. 29.
Fig. 2.5. Farafra, Wadi el Obeiyid. Hidden Valley Plateau, Site HV-PL I Surface. (Scale 2:3), p. 29.
Fig. 2.6. Farafra, Wadi el Obeiyid. Hidden Valley Plateau, Site HV-PL I Surface. (Scale 1:2), p. 30.
Fig. 2.7. Farafra, Wadi el Obeiyid. Hidden Valley Plateau, Site HV-PL I Surface and Location 18/11/2 (no 7). (Scale 2:3), p. 31.
Fig. 2.8. Farafra, Wadi el Obeiyid. Hidden Valley Plateau, Site HV-PL I. (Scale 1:2). Bifacial axe of Nazlet Kather type, p. 32.
Fig. 2.9. Farafra, Wadi el Obeiyid. Hidden Valley Plateau, Site HV-PL I. Northern profile of square 25 9E. Black squares represent charcoal in the fireplace. Black polygons represent limestone fragments, open polygons are burned pebbles in the fireplace, p. 32.
Fig. 2.10. Farafra, Wadi el Obeiyid. Sheikh el Obeiyid area, The Finger. (Scale 2:3), p. 33.
Fig. 2.11. Farafra, Wadi el Obeiyid. Sheikh el Obeiyid area, The Finger. (Scale 2:3), p. 34.
Fig. 2.12. Farafra, Wadi el Obeiyid. Sheikh el Obeiyid area, Bir el Obeiyid. (Scale 1:2), p. 35.
Fig. 2.13. Farafra, Wadi el Obeiyid. Ain Dalla road. (Scale 2:3), p. 36.
Fig. 2.14. Farafra, Wadi el Obeiyid. Ain Dalla road. (Scale 2:3), p. 37.
Fig. 2.15. Farafra, Wadi el Obeiyid. Ain Dalla road. (Scale 2:3), p. 38.
Fig. 3.1. Map of the Egyptian Western Desert with location of Farafra Oasis, p. 40.
Fig. 3.2. Nabta Playa, Western Desert. Pottery sherd from Bir Kiseiba, Site E-79-8 (from Connor 1984: fig.11.15, c), p. 41.
Fig. 3.3. Farafra Oasis, Western Desert. Sites and playas formations around Qasr Farafra, p. 42.
Fig. 3.4. Farafra Oasis, Western Desert. Field work at Ain e-Raml site, p. 42.
Fig. 3.5. Farafra Oasis, Western Desert. Ain e-Raml, grid for systematic survey and excavation, p. 43.
Fig. 3.6. Farafra Oasis, Western Desert. Ain e-Raml, Square HV21C, p. 44.
Fig. 3.7. Farafra Oasis, Western Desert. Ain e-Raml, lithic industry. (Scale 1:1), p. 45.
Fig. 3.8. Farafra Oasis, Western Desert. Abu Kasseb, collection area at site Abu Kasseb I, p. 46.
Fig. 3.9. Farafra Oasis, Western Desert. Abu Kasseb, lithic industry. (Scale 2:3), p. 47.
Fig. 3.10. Farafra Oasis, Western Desert. Abu Kasseb. (Scale 2:3). Bifacial sidescrapers, p. 47.
Fig. 3.11. Nabta Playa, Western Desert. Reconstruction of hut I/90 at site E-75-6 (from Wasylikowa et al. 1995: fig.9), p. 48.
Fig. 7.9. Farafra, Wadi el Obeiyid. El-Bahr basin, retouched tools from concentration BH-90-4C1. (Scale 2:3), p. 118.

Fig. 7.10. a-b. Farafra, Wadi el Obeiyid. El-Bahr basin, BH-90-5E: distribution of cultural material inside the collection grid, p. 121.

Fig. 7.11. Farafra, Wadi el Obeiyid. El-Bahr basin, fieldwork at the BH-90-5C sheltered site, p. 123.

Fig. 7.12. Farafra, Wadi el Obeiyid. El-Bahr basin, section of shelter BH-90-5C and (above) the grid for excavation, p. 124.

Fig. 7.13. Farafra, Wadi el Obeiyid. El-Bahr basin, frequency of debitage and tool classes within the four assemblages, p. 126.

Fig. 7.14. Farafra, Wadi el Obeiyid. El-Bahr basin, edge retouch vs bifacial retouch in the four concentrations, p. 127.

Fig. 8.1. Farafra, Wadi el Obeiyid. El-Bahr basin, BH-88-2A: a, distribution of cultural material in the collection grid; b, detail of the collection surface in squares B2-C2/D2/B3-C3-D3, p. 130.

Fig. 8.2. Farafra, Wadi el Obeiyid. El-Bahr basin, BH-88-2A: debitage. (Scale 1:1), p. 133.

Fig. 8.3. Farafra, Wadi el Obeiyid. El-Bahr basin, BH-88-2A: cores and retouched tools. (Scale 2:2), p. 134.

Fig. 8.4. Farafra, Wadi el Obeiyid. El-Bahr basin, BH-88-2A: retouched tools. (Scale 2:3), p. 137.

Fig. 8.5. Farafra, Wadi el Obeiyid. El-Bahr basin, BH-88-2A: retouched tools. (Scale 2:3), p. 138.

Fig. 9.1. Farafra, Wadi el Obeiyid. El-Bahr basin, DEM and archaeological features. Differential GPS prospecting and processing by Sabatino Laurenza and Augusto Palombini (2005), p. 142.

Fig. 9.2. Farafra, Wadi el Obeiyid. El-Bahr basin, Steinplatz h-3gg before excavation, p. 143.

Fig. 9.3. Farafra, Wadi el Obeiyid. El-Bahr basin, a: the Steinplatz h-4f during the excavation; b: the stratigraphic section, p. 144.

Fig. 9.4. Farafra, Wadi el Obeiyid. El-Bahr basin, a: the Steinplatz h-4g before excavation; b: the stratigraphic section, p. 145.

Fig. 9.5. Farafra, Wadi el Obeiyid. El-Bahr basin, map showing the density of Steinplätze (darker = maximum concentration) and the position of the radiometric datings (unc.bp). In the rectangle the areas identified by Barich et al. (1991) are visible, p. 146.

Fig. 9.6. Farafra, Wadi el Obeiyid. El-Bahr basin, frequency distribution curve of the calibrated radiocarbon datings, p. 148.

Fig. 10.1. Farafra, Wadi el Obeiyid. Topographic contour map of the Hidden Valley basin showing the location of the studied test pits. Prospecting by Giulio Fratini and Francesco Moriconi (Acanthus) in 2001, p. 152.

Fig. 10.2. Farafra, Wadi el Obeiyid. Geologic map of the Hidden Valley basin, p. 153.

Fig. 10.3. Farafra, Wadi el Obeiyid. Hidden Valley, North/South geologic cross-section along the basin showing the position of the different units, p. 153.

Fig. 10.4. Farafra, Wadi el Obeiyid. Hidden Valley. Microstratigraphy of test pit 12 (TP12), p. 155.

Fig. 10.5. Farafra, Wadi el Obeiyid. Hidden Valley. Microstratigraphy of test pit 7 (TP7) with the grain size distribution and parameters, p. 156.

Fig. 10.6. Farafra, Wadi el Obeiyid. Hidden Valley. Microstratigraphy of test pit 11 (TP11) with the grain size distribution and parameters, p. 157.

Fig. 10.7. Farafra, Wadi el Obeiyid. Hidden Valley. Microstratigraphy of test pit 5 (TP5) with the grain size distribution and parameters, p. 159.

Fig. 11/1.1. Farafra, Wadi el Obeiyid. a: topographical contour map of the Hidden Valley region. Differential GPS prospection by Emanuele Mariotti in 2006, final processing by Massimo Penzacchioni; b: ancient playa remains at Hidden Valley (photo courtesy of R.R. Gebhardt), p. 168.

Fig. 11/1.2. Farafra, Wadi el Obeiyid. Hidden Valley village, a: topographical contour map of the main basin showing the location of the "village". Prospection by Giulio Fratini and Francesco Moriconi (Acanthus) in 2001; b: details of the village with the topographical grid, p. 170.

Fig. 11/1.3. Farafra, Wadi el Obeiyid. Hidden Valley village, a: general planimetry of the settlement; b: key to the sedimentary units (su) identified in the stratigraphic sections, p. 173.

Fig. 11/1.4. Farafra, Wadi el Obeiyid. Hidden Valley village, a: photomosaic of some of the slab structures in Squares F and G; b: photomosaic of some of the slab structures in Squares (from right) E/1, A/4, A/3, A/2 (final processing by C.de la Fuente), pp. 174-175.

Fig. 11/1.5. Farafra, Wadi el Obeiyid. Hidden Valley village, sector A/3, section (see the key to sedimentary units (su) in fig.11/1.3, b), p. 176.

Fig. 11/1.6. Farafra, Wadi el Obeiyid. Hidden Valley village, a: sector A/1, plan of layer III; b: sector F/1d, the excavated slab structures, p. 177.

Fig. 11/1.7. Farafra, Wadi el Obeiyid. Hidden Valley village, a: sector A/4, plan of layers IIA and III; b: sector A/4, the central feature, p. 179.

Fig. 11/1.8. Farafra, Wadi el Obeiyid. Hidden Valley village, a-c: sectors A/4, B/4, D/2, sections (see the key to sedimentary units (su) in fig.11/1.3, b), p. 182.

Fig. 11/1.9. Farafra, Wadi el Obeiyid. Hidden Valley village, sector E/3, cooking-hole in layer II, p. 184.

Fig. 11/1.10. Farafra, Wadi el Obeiyid. Hidden Valley village, a: sector E/3, plan of layers IIA-III; b: sector E/3, plan of layer III, p. 185.

Fig. 11/1.11. Farafra, Wadi el Obeiyid. Hidden Valley village, a: sector E/2, hearths in layers III and IIIA, p. 189.
Fig. 11/1.21. Farafra, Wadi el Obeiyid. Hidden Valley village, worked ostrich eggshell from sector F/4. (Scale 2:3), p. 235.

Fig. 11/1.22. Farafra, Wadi el Obeiyid. Map of the Wadi el Obeiyid with the areas of provenance of bifacial tools, p. 267.

Fig. 11/4.1. Farafra, Wadi el Obeiyid. Hidden Valley village, variation of frequencies of flakes and blades classes in layers II, IIA, III, p. 245.

Fig. 11/4.2. Farafra, Wadi el Obeiyid. Symmetric pointed knives from Hidden Valley (nos 1, 5, 6), El-Bahr (no 2), Northern Plateau playa 1 (no 3), Northern Plateau (no 4). (Scale 2:3), p. 269.

Fig. 11/4.3. Farafra, Wadi el Obeiyid. Asymmetric pointed knives from Hidden Valley (nos 1, 6), Northern Plateau playa 2 (no 2), Northern Plateau playa 1 (no 3), El-Bahr (nos 4, 5). (Scale 2:3), p. 271.

Fig. 11/4.4. Farafra, Wadi el Obeiyid. Retouched tools from Hidden Valley (nos 1, 3, 5, 7), Northern Plateau playa 2 (no 2), Northern Plateau playa 1 (no 4), Northern Plateau (no 6). (Scale 2:3), p. 273.

Fig. 11/4.5. Farafra, Wadi el Obeiyid. Retouched and ground tools from Northern Plateau (no 1), Hidden Valley (nos 2, 6), Northern Plateau playa 2 (nos 3, 5), Northern Plateau playa 1 (no 7), El-Bahr (nos 4, 8). (Scale 2:3), p. 275.

Fig. 11/4.6. Farafra, Wadi el Obeiyid. Scrapers from Northern Plateau playa 1 (nos 1, 2, 4), Hidden Valley (nos 3, 5), El-Bahr (no 6), Hidden Valley 2 (no 7). (Scale 2:3), p. 278.

Fig. 11/4.7. Farafra, Wadi el Obeiyid. Retouched tools from Hidden Valley (nos 1-3, 6, 7, 10, 11, 13), Hidden Valley 2 (nos 4, 8), El-Bahr (no 5), Northern Plateau playa 1 (nos 9, 12, 14). (Scale 2:3), p. 280.

Fig. 11/5.1. Farafra, Wadi el Obeiyid. Large stone tools from Hidden Valley village, sector A/4 layer II (no 1), E/3 surface (no 2), L/4 surface (no 3), A/4 surface (no 4), E/3 layer II (no 5); from Wadi el Obeiyid (no 6) and Hidden Valley basin (nos 7-9). (Scale 1:2), p. 289.

Fig. 11/5.2. Farafra, Wadi el Obeiyid. Hidden Valley village, lower grinder from sector F/1 layer II. (Scale 1:2), p. 291.
Fig. 11/5.3. Farafra, Wadi el Obeiyid. Hidden Valley village, lower grinder from sector B/4 layer II. (Scale 1:3), p. 292.

Fig. 11/5.4. Farafra, Wadi el Obeiyid. Hidden Valley village, quartzitic sandstone tool for decoration (?) from sector I/2 layer IIA. (Scale 2:3), p. 293.

Fig. 11/5.5. Farafra, Wadi el Obeiyid. Hidden Valley village, quartzitic sandstone fireboard (?) from sector I/3 layer III. (Scale ca 1:2), p. 295.

Fig. 11/5.6. Farafra, Wadi el Obeiyid. Hidden Valley, grindstone distribution map, p. 297.

Fig. 11/5.7. Farafra, Wadi el Obeiyid. Hidden Valley basin, ostrich eggshell beads, p. 302.

Fig. 11/6.2. Farafra, Wadi el Obeiyid. Hidden Valley village, ostrich eggshell beads. a1, preforms with traces of scraping on the inner surface; a2, fragments of preforms with traces of scraping and subsequent perforation on the inner surface; b1, rectangular plaquettes showing the beginning of perforation; b2, perforated sub-circular preforms with technological striations around the perforation on the inner surfaces; c1, c2, plaquettes showing technological striations and perforation together with some completely finished beads; d, detachments on the outer surface of the hole of an archaeological bead perforated from the inside (20x); e, preform showing a hourglass cross-section of the perforation conducted from both surfaces; f, view of a completely finished bead whose edges still retain scars from the flaking made by indirect inverse percussion for the manufacture of the sub-circular preform (10x); g, traces of abrasion on the outer edges of an archaeological bead; h, experimental preform obtained by indirect inverse percussion (10x); i, detachments (or flaking scars) on the outer surface of the hole of an experimental bead perforated from the inner surface (10x); l, inner surface of an experimental bead drilled using a sharp chert tool (10x); m, edges of an experimental bead finished by abrasion (30x), p. 303.

Fig. 11/6.3. Farafra, Wadi el Obeiyid. Hidden Valley village, ostrich eggshells. 1, flakes from layer IIA characterized by abrupt retouch of the edge; 2, flakes from layer IIA characterized by notched retouch of the edge; 3, fragment from layer IIA with traces of carnivore activity; 4, fragment from layer III with traces of carnivore activity; 5, fragment from layer IIA with striations on the inner surface; 6, 7, decorations on fragments of archaeological flasks, p. 305.

Fig. 11/7.1. Farafra, Wadi el Obeiyid. Hidden Valley, panoramic view of the basin. In the white frame is also visible the Hidden Valley 2. The circles indicate the location of excavated Steinplätze: i) black – feature 1b; ii) white – HV-h-06-02, p. 307.

Fig. 11/7.2. Farafra, Wadi el Obeiyid. Hidden Valley, Area A-IV with features 1a, 1b and 1c, p. 308.

Fig. 11/7.3. Farafra, Wadi el Obeiyid. Hidden Valley, Area A-IV. Feature 1b: stratigraphic section, p. 309.

Fig. 11/7.4. Farafra, Wadi el Obeiyid. Hidden Valley, DEM of the basin, archaeological features and location of the available radiometric datings, p. 311.

Fig. 11/7.5. Farafra, Wadi el Obeiyid. Hidden Valley, Steinplatz HV-h-06-02 before the excavation, p. 312.

Fig. 11/7.6. Farafra, Wadi el Obeiyid. Hidden Valley, DEM of the main basin and of Hidden Valley 2 with archaeological features. The black squares indicate the areas of the 1990’s researches, p. 313.

Fig. 11/8.1. Farafra, Wadi el Obeiyid. Hidden Valley village: a, artefact from sector D/2, surface (photo by S. Oboukhoff, CNRS); b, morphology of the active part of the tool. Stereomicroscope photo (0,7x1); c-e, details of the abrasion striations with different stereomicroscope magnifications (c: 0,7x1), (d: 10x1), (e: 12,5x1). Stereomicroscope photos by G. Petrullo, p. 316.

Fig. 11/8.2. Farafra, Wadi el Obeiyid. Hidden Valley village: a, artefact from sector A/4, layer IIA (photo by S. Oboukhoff, CNRS); b, detail of the scraping striations on the tip of the tool. Stereomicroscope photo (10x1) by G. Petrullo, p. 317.

Fig. 11/8.3. Farafra, Wadi el Obeiyid. Hidden Valley village: a, artefact from sector A/1, layer III (photo by S. Oboukhoff, CNRS); b, magnifications of the proximal (b) and distal (c) end of the tool. Stereomicroscope photo (0,7x1) by G. Petrullo, p. 318.

Fig. 11/9.1. Farafra, Wadi el Obeiyid. Hidden Valley village, length/width ratio of flakes and blades measured on a total of 200 items selected from layers III-I, p. 328.

Fig. 12.1. Farafra Oasis, Wadi el Obeiyid. Hidden Valley village, percentages of wild grasses recognised in the archaeological site, p. 334.

Fig. 12.2. Farafra Oasis, Wadi el Obeiyid. Hidden Valley village, scanning electron micrographs of plant macro-remains from the site: a, grain of Sorghum Moench; b, grain without embryo of Sorghum Moench; c, spikelet of Panicum repens L.; d, grain of Panicum repens L.; e, grain of Brachiaria (Trin.) Griseb; f, grain of Phalara L.; g, fruit of Ephedra L.; h, fruit (anthocarp) of Boerhaavia repens L.; i, seed of Portulaca oleracea L.; j, siliculae of Lepidium/Farsetia; k, seed of Schonoua purpurea (Forssk.) Schweinf; l, siliculae of Coronopus niloticus (Delile) Speng; m, seed of Papaver rhoes/ decaisnei, p. 337.

Fig. 12.3. Farafra Oasis, Wadi el Obeiyid. Hidden Valley village, total numbers and densities of plant macro-remains recovered from palaeobotanical samples, p. 341.

Fig. 13.1. Sorghum halepense (L.) Pers. photographed near Rome, Italy, p. 351.

Fig. 13.2. Techniques for harvesting wild grass seeds, p. 353.

Fig. 13.3. Domestic Sorghum near Rome, Italy, p. 355.

Fig. 13.4. Techniques for harvesting domestic Sorghum, p. 356.

Fig. 13.5. Experimental unretouched flake used in harvesting Sorghum halepense. Polish developed after 15 minutes, p. 359.
Experimental flint tools used in harvesting domestic Sorghum. Different phases of polish formation, p. 361.

Farafra, Wadi el Obeiyid. Hidden Valley village, lithic tools analysed at the microscope, p. 363.

Farafra, Wadi el Obeiyid. Hidden Valley village, lithic tools analysed at the microscope, p. 364.

Fayum, Bahr el Malek. Denticulated bifacial sickle element showing dark striations running parallel to the working edge, p. 366.

Farafra Oasis, Wadi el Obeiyid. Hidden Valley village, faunal remains from the archaeological site (scale approximate). 1, distal tibiotarsus, common buzzard, Buteo buteo vulgaris, northern part F/1, layer II; 2, astragalus of dama gazelle, Gazella dama, southern part, Gl/4, layer II; 3, fragmentary bucranium, male dorcas gazelle, Gazella dorcas, with cutmarks near the base of the horncores, southern part, A/3, layer III; 4, burned second phalanx of ostrich, Struthio camelus, northern part, E/3, layer III; 5, coarticulating canastragalus and astragalus, sheep/goat, southern part, A/1, layer III; 6, distal metatarsus of goat, Capra aegagrus f. hircus, southern part, A/4, surface (=IIA); 7, scapula, dorcas gazelle, Gazella dorcas, northern part, E/2, layer II; 8, distal metatarsus, sheep, Ovis ammon f. aries, northern part, E/8, layer III; 9, distal metatarsus, goat, Capra aegagrus f. hircus, southern part, A/4, surface (=IIA), p. 372.

Farafra, Wadi el Obeiyid. Cave 1, frontal view of the opening of the cave, p. 377.

Farafra, Wadi el Obeiyid. Cave 1, geological section of the Northern Plateau escarpment showing the location and the geological setting of the cavern, p. 378.

Farafra, Wadi el Obeiyid. Cave 1, an east-west geological cross-section in the Front Gallery, p. 382.

Farafra, Wadi el Obeiyid. Cave 1, view of the cave which opens onto the southern slope of the Northern Plateau, p. 386.

Farafra, Wadi el Obeiyid. Cave 1, a: planimetry of the cave showing the three adjoining chambers which form the elongated cavity. Symbols indicate the position of the rock art works; b: cross-section of the cave along the NE-SW axis. Mapping C.M. Amici, computer processing L. Narisi, pp. 388-389.

Farafra, Wadi el Obeiyid. Cave 1, a-d: solution hollows in the wall of the Front (a, b) and Back (c, d) galleries. The ceilings are rounded off and in some places show dripstone stalactite and stalagmite deposits, p. 390.

Farafra, Wadi el Obeiyid. Cave 1, a: the Back Gallery with the old hearth in the foreground. Gallery’s ceilings are rounded off with dripstone stalactite and stalagmite deposits. The hearth is divided into two shafts and, based on the thick black patina of its external walls, was presumably used in ancient times, b: photographic enlargement of the hearth showing the small mammal lying on top of the hearth fill, pp. 392-393.

Farafra, Wadi el Obeiyid. Cave 1, a: view of the test trench opened into the aeolian deposit lying against the back wall of the Front Gallery; b: stratigraphic section in the test trench, p. 394.

Farafra, Wadi el Obeiyid. Cave 1, a: plan of the Front Gallery showing the position of the engravings along the back wall. Mapping C.M. Amici, computer processing L. Narisi; b: the main panel in the Front Gallery. Above it features three animal figures side by side in a horizontal row, lightly engraved, with a white patina incision. Starting on the left we can recognize a kind of mouflon, a gazelle or oryx and, probably, a giraffe. The lowest level features a pattern of shallow rounded-off cavities with 4 or 5 smaller cavities above. They are arranged in groups of five (images of hands?) or four on the wall area and were performed with hammered technique. Comparisons can be made with similar examples from Dor-el-Gusa in the Fezzan which have been interpreted as “lion paw-print” symbols to which can be attributed a magic-ritual meaning. Tracing B.E. Barich and A. Stoppielli, computer processing L. Narisi, pp. 396-397.

Farafra, Wadi el Obeiyid. Cave 1, details of the animal engravings and the “lion paw-prints” in the panel of the Front Gallery. a: the large partially smoothed figure of a possible mouflon with long horns. The front hooves of the animal are crossed by two parallel lines converging at both of its ends; b: the gazelle or oryx with long straight horns. The inner surface of the body was partially smoothed to emphasise the image while the outline of the image itself was made with a thin regular stroke; c: the probable giraffe. The legs are represented with a bundle of lightly engraved lines; d: one of the lion paw-prints. It is possible to identify the hammered technique and a partial smoothing of the rock inside the small cavities, pp. 398-399.

Farafra, Wadi el Obeiyid. Cave 1, cross-section of the cave along the NE-SW axis with schematic representations of the art works along the western wall. Mapping C.M. Amici, computer processing L. Narisi, p. 400.

Farafra, Wadi el Obeiyid. Cave 1, animal figures engraved with the same technique inside the three galleries. The rock wall had undergone some sort of preparation to render it uniform; the inner surface of the figures was partially smoothed and the outline of the images was incised regularly, a, b: the two small mammals represented on the back wall of the Front Gallery above the “frieze”. Figure (a) is clearly a goat with twisted horns; the other (b) is probably a wild desert bovid, similar to an oryx; c, d: other two sable-horned animals. Figure (c) is engraved on the western wall of the Mid Gallery, figure (d) on the same western wall but in the Back Gallery associated with ovoid “female” signs visible on the left side of the animal. Tracing B.E. Barich and A. Stoppielli, computer processing L. Narisi, p. 401.

Farafra, Wadi el Obeiyid. Cave 1, photographic representation of the sable-horned animal with “female” signs in the Back Gallery, p. 401.
LIST OF FIGURES

Fig. 16.11. Farafra, Wadi el Obeiyid. Cave 1, a: engraving on the western wall of the Mid Gallery representing a line curved at both of its ends, from which subtle traces of rays span out. It is interpreted as a schematic representation of a boat; b: drawing of the same figure. Tracing B.E. Barich and A. Stoppiello, computer processing L. Narisi, p. 402.

Fig. 16.12. Farafra, Wadi el Obeiyid. Cave 1, a, b: vertically incised lines without a precise meaning. In photograph (b) paintings in red/brown, now very discoloured, appear to be cut through by vertically incised lines; c: two cavities carved into the rock wall in the Back Gallery, p. 403.

Fig. 16.13. Farafra, Wadi el Obeiyid. Cave 1, hands painted with the “negativo” technique on the wall of the Back Gallery. a, b: a group of five hands and a forearm in the area close to Niche A includes the best executed and preserved images; c, d: two painted hands inside Niche A with thick encrustations created by insect nests; e, f: hands inside Niche B only one of which is clearly visible and is crossed horizontally by erasing strokes, pp. 404-405.

Fig. 16/AI.1. Farafra, Wadi el Obeiyid. Boats Arch site, panoramic view of the inselberg, p. 406.

Fig. 16/AI.2. Farafra, Wadi el Obeiyid. Boats Arch site, 3D model of the inselberg (by Emanuele Mariotti), p. 407.

Fig. 16/AI.3. Farafra, Wadi el Obeiyid. Boats Arch site, one of the engraved boats, p. 408.

Fig. 16/AI.4. Farafra, Wadi el Obeiyid. Boats Arch site, engraved and painted figures, p. 409.

Fig. 16/AII.1. Wadi el Obeiyid Cave 1. Results of pollen analysis on coprolites collected in the Front Gallery (Test Trench) and Back Gallery (Hearth), p. 416.

Fig. 17.1. Farafra Oasis, Western Desert. Frequency histogram of the BC calibrated dates, with a confidence interval of 1σ, from all the localities (see table 17.1). The seven AD samples have not been inserted. The frequency classes were set at 250 years, a value sufficient to distinguish between different periods as it is well above double the average experimental error, p. 423.

Fig. 17.2. Farafra Oasis, Western Desert. Partial histograms of the BC calibrated dates, with a confidence interval of 1σ, for the sites where the largest number of samples were collected: Hidden Valley village; El-Bahr Playa; Sheikh/Bir El Obeiyid, p. 424.

Fig. 18.1. Farafra, Wadi el Obeiyid. Map of the Northern Plateau along the Wadi el Obeiyid with the distribution of the six raw material outcrops which were sampled, p. 428.

Fig. 18.2. Farafra, Wadi el Obeiyid. Reconstruction of the geologic setting of the proposed sources of lithic raw materials along the Wadi el Obeiyid, p. 430.

Fig. 18.3. Farafra, Wadi el Obeiyid. Field photographs of the proposed sources of lithic raw materials used for the archaeological artefacts. A: chert band in the Ain Dalla Formation; B: chert nodule embedded in the Lower Eocene Farafra limestone; C: surficial silcrete at the top of the Sheikh el Obeiyid plateau; D: dolomitic silcrete at Bir el Obeiyid; E: chalcedony balls embedded in karstic Terra Rossa; F: fracture filling chalcedony, p. 431.

Fig. 18.4. Farafra, Wadi el Obeiyid. Thin sections of the studied raw materials. A: dolomitic silcrete with dolomite rumbas and silica cement; B: dolomitic silcrete with dolomitic fossils cemented with silica; C: surficial silcrete with very fine quartz crystals; D: Farafra chert with alveoline fossils; E: Ain Dalla chert made up of micro-crystalline quartz; F: quartzite with rounded quartz grains and chaledonic cement; G, H: fibrous crystal chaledony, p. 434.

Fig. 18.5. Farafra, Wadi el Obeiyid. Thin section of the studied grindstone fragments. A: quartz-arenite with rounded quartz grains and siliceous cement; B: feruginous quartz-arenite, with angular quartz grains cemented with iron oxide; C: quartz-arenite with iron oxide and calcareous cement; D: fossiliferous sandstone, p. 435.

Fig. 18.6. Farafra, Wadi el Obeiyid. Spider diagrams showing the elements distribution of the studied geological and archaeological materials. In the diagram (A) the B (boron), V (vanadium), Ba (barium) contents are compared; in the diagram (B) the concentrations of Co (cobalt), Ni (nichel), Sr (strontium) are compared, p. 438.

Fig. 18.7. Farafra, Wadi el Obeiyid. Spider diagrams of REE content for both archaeological and geological samples normalized to PAAS (Post Archaean Australian Shale) (Taylor, McClennan 1985). All the investigated samples show light REE depleted and heavy REE enriched patterns, p. 439.

Fig. 18.8. Farafra, Wadi el Obeiyid. Binary plot of Mn versus Ba/Sr discriminating between dolomitic silcrete and different chert types. Most of the mid Holocene artefacts are plotted in the same field of the chert raw materials, p. 440.

Fig. 18.9. Farafra, Wadi el Obeiyid. Binary plot of log Yb (ytterbium) versus La (lanthanum) showing correspondences between the Middle Stone Age artefacts with the dolomitic silcrete and the mid Holocene artefacts with chert and surficial silcrete raw materials, p. 441.

Fig. 18.10. Farafra, Wadi el Obeiyid. Binary plots of: (A) Sr versus Ni (nichel); (B) Ba versus Ni; (C) V versus Ni of the studied geological and archaeological samples, p. 442.

Fig. 19.1. The Egyptian Western Desert with location of the Farafra Oasis, p. 446.

Fig. 19.2. Farafra Oasis, Western Desert. Map of the Farafra depression showing the sites mentioned in the text. SK-OB: Sheikh el Obeiyid; HV2: Hidden Valley 2; AR: Ain e-Raml; R2: Rajih site 2/99, p. 447.

Fig. 19.3. Farafra Oasis, Western Desert. Pottery fragments and reconstructed pottery forms from Ain e-Raml, p. 449.

Fig. 19.4. Farafra Oasis, Western Desert. Calibration diagrams for samples from Ain e-Raml. a: AR-HVII/16; b: AR-HV-1/49, p. 452.

Fig. 19.5. Farafra Oasis, Western Desert. Polished sections of pottery samples, p. 452.
Fig. 19.6. Farafra Oasis, Western Desert. Thin sections (2.5X) of the identified fabrics: Quartz fabric (Fa01, a: N//, b: N+); Seed-tempered fabric (Fa03, c: N//, d: N+); Fibre-tempered fabric (Fa06, e: N//, f: N+); Quartz and calcareous fabric (Fa08, g: N//, h: N+), p. 453.

Fig. 19.7. Farafra Oasis, Western Desert. Diagrams of the chemical elements in the selected sample: a: (CaO+MgO)–Al₂O₃–SiO₂ wt% diagram (Dj, diopside; Gh, gehlenite; An, anorthite); b: Zr vs. Cr plot (ppm), p. 455.

Fig. 20.1. Farafra, Wadi el Obeiyid. Hidden Valley village, charcoal of Tamarix sp. a: transverse section. Most of Tamarix charcoal have very broad rays; b: radial section. Rays are composed of mixed procumbent, square and upright cells, p. 461.

Fig. 20.2. Farafra, Wadi el Obeiyid. Hidden Valley village, a, b: charcoal of Acacia raddiana, tangential section. A. raddiana is the species with the largest crystals; c: charcoal of Acacia asak, transverse section; d: Acacia asak, tangential section. Rays are narrow in A. asak, p. 462.

Fig. 21.1. Farafra Oasis, Western Desert. A map of the Wadi el Obeiyid region with the sites mentioned in the text (modified from Barich et al.2013), p. 468.

Fig. 21.2. Farafra Oasis, Western Desert. Map of the White Desert National Park showing the surface (3010 km²) of the protected area (from White Desert National Park ed. by Siliotti A., Geodia edizioni, Italy), p. 469.

Fig. 21.3. Farafra Oasis, Western Desert. a: uncalibrated radiocarbon dates from Hidden Valley village; b: uncalibrated radiocarbon dates from Sheikh el Obeiyid, p. 472.

Fig. 21.4. Farafra Oasis, Western Desert. Stone slab structures in Wadi el Obeiyid. a: feature 1, Sector F/3 in the Hidden Valley village; b: features 7 and 8 in the Sheikh el Obeiyid settlement, pp. 474-475.

Fig. 21.5. Farafra Oasis, Western Desert. Panoramic views of Sheikh el Obeiyid region. a: the “Sheikh” chalky pedestal hill; b: excavation of feature 14, Sheikh el Obeiyid village; c: view of the Bir el Obeiyid playa; d: the second erosion surface on the Northern Plateau escarpment at Sheikh el Obeiyid; e: a gouge collected from surface at Valley 1, Sheikh el Obeiyid; f: feature 29, Sheikh el Obeiyid village, at the end of excavation, p. 479.

Fig. 21.6. Chronological comparative table of the main archaeological Units of the Western Desert of Egypt, p. 482.
List of Tables

Table 3.1. Ain e-Raml. Distribution of lithic industry in the squares, p. 46.
Table 5.1. Ain e-Raml playa. Benthic foraminiferal counts in sediment (source: Seidenkrantz et al. 1999: 100, Table App. 2:1), p. 75.
Table 5.3. Farafra Depression. Diatom analytical results (source: Alhonen et al. 1999: 105, Table App. 3:1), p. 77.
Table 6.1. Wadi el Obeiyid, El-Bahr basin. Lithostratigraphy of the playa and palaeoclimatic oscillations, p. 89.
Table 7.1. Radiocarbon chronology of El-Bahr basin. The calibration has been run with INTCAL09 (Reimer et al. 2009), p. 101.
Table 7.2. BH-90-2G. Distribution of cultural products in the collection sectors, p. 109.
Table 7.3. BH-88-4C. Distribution of cultural products in the collection sectors, p. 112.
Table 7.4. Metrical data of tools from concentrations 4C, 4C1, 5E, p. 113.
Table 7.5. BH-90-4C1. Distribution of cultural products in the collection sectors, p. 116.
Table 7.6. BH-90-5E. Distribution of cultural products in the collection sectors, p. 122.
Table 8.1. BH-88-2A. Frequency of debitage classes and correlation with stone materials, p. 132.
Table 8.2. BH-88-2A. Metrical data for debitage and tools, p. 135.
Table 8.3. BH-88-2A. Frequency of retouched tools and correlation with stone materials, p. 136.
Table 9.1. Chronology of El-Bahr basin. The calibration has been run with INTCAL09 (Reimer et al. 2009), p. 147.
Table 10.2. Hidden Valley. Microstratigraphy of the Holocene sediments in TP 7, p. 156.
Table 10.3. Hidden Valley. Microstratigraphy of the Holocene sediments in TP 11, p. 158.
Table 10.5. Hidden Valley. Microstratigraphy of the Holocene sediments in TP 10, p. 162.
Table 10.6. Hidden Valley. Heavy mineral composition of the Holocene sediments (opaque minerals are represented by iron oxides. Non-opaque frequencies are normalized to 100%), p. 163.
Table 10.7. Hidden Valley. Palaeoenvironmental, palaeoclimatic and lake level variations, p. 165.
Table 11/1.1. Radiocarbon chronology of the Hidden Valley village. The calibration has been run with INTCAL09 (Reimer et al. 2009), p. 172.
Table 11/1.2. Hidden Valley village. Presence of layers/occupations in the different sectors of the settlement, p. 203.
Table 11/1.3. Hidden Valley village. Occupation and palaeoclimatic phases recognized in the village, p. 204.
Table 11/2.1. Hidden Valley village. Distribution and percentages of cultural products from the surface, p. 212.
Table 11/2.2. Hidden Valley village. Distribution and percentages of cultural products from layer I and layer II, p. 219.
Table 11/2.3. Hidden Valley village. Distribution and percentages of cultural products from layer IIA, p. 226.
Table 11/2.4. Hidden Valley village. Distribution and percentages of cultural products from layer III, p. 233.
Table 11/2.5. Hidden Valley village. Distribution and percentages of cultural products from layer IIIA, p. 242.
Table 11/2.7. Hidden Valley village. Frequency of types of cores in the in situ layers, p. 245.
Table 11/2.8. Hidden Valley village. Frequency of types of cores in the in situ layers, p. 245.
Table 11/2.9. Hidden Valley village. Distribution and percentages of the ostrich eggshell elements from surface and from the stratigraphic section, p. 247.
Table 11/3.1. Hidden Valley village. Distribution and percentages of cultural products from sectors B/4, D/2, E/1, p. 252.
Table 11/4.1. The bifacial products from the Wadi el Obeiyid, p. 267.
Table 11/5.1. Hidden Valley. The large stone tools complex, p. 286.
Table 11/6.1. Hidden Valley village. Type and provenance of the ostrich eggshell rims, p. 304.
Table 11/7.1. Hidden Valley village. Debitage and tools collected from Area A-IV, feature 1b, p. 309.
Table 11/9.1 Hidden Valley village. Distribution and overall percentages of cultural products collected from all sectors of the excavation, p. 323.
Table 12.1. Hidden Valley village. Abundance (A), frequency (F) and density (D) of plant macro-remains separated from archaeological sectors, p. 335.
Table 12.3. Hidden Valley village. Densities of plant macro-remains and carbon dating of palaeobotanical samples, p. 341.
Table 12.4. Hidden Valley village. Phenological aspects (flowering and fruiting seasons) and floristic categories of taxa (after Wickens 1976) identified from the site, p. 343.

Table 13.2. Hidden Valley village. Layer III. Correlation between plant macro-remains and excavation squares, p. 348.

Table 13.3. Hidden Valley village. Layer IIA. Correlation between plant macro-remains and excavation squares, p. 349.

Table 13.4. Hidden Valley village. Layer II. Correlation between plant macro-remains and excavation squares, p. 349.

Table 13.5. Hidden Valley village. Correlation between plant macro-remains and archaeological features, p. 350.

Table 15.1. Wadi el Obeiyid Cave 1. Grain size data of the allogenic cave clastics and the aeolian sand deposited inside the cave, p. 379.

Table 15.2. Wadi el Obeiyid Cave 1. Percentages of heavy minerals in the allogenic cave clastics and aeolian sand. Opaque minerals: mainly iron oxides; metastable minerals: amphiboles, piroxene and epidotes; metamorphic minerals include staurolite and garnet, p. 379.

Table 15.3. Wadi el Obeiyid Cave 1. Isotopic Composition and U/Th Disequilibrium Ages of speleothem deposits from the cave, p. 384.

Table 16.1. Wadi el Obeiyid Cave 1. Radiocarbon dates from the Test Trench. The calibration has been run with INTCAL09 (Reimer et al. 2009), p. 387.

Table 16AII.1. Wadi el Obeiyid Cave 1. Principal taxa of small mammals (MNI) from the cave, p. 412.

Table 17.1. Farafra Oasis. Radiocarbon dates associated with excavated archaeological sites, pp. 420-422.

Table 18.1. Wadi el Obeiyid. Trace and Rare Earth Elements of the studied geological and archaeological samples, p. 437.

Table 19.1. Farafra Oasis. The analysed archaeological pottery samples, p. 448.

Table 19.2. Farafra Oasis. 14C AMS results from the Ain e-Raml site. The calibration has been run with CALIB REV5.0.2 (Reimer et al. 2004; Stuiver, Reimer 1993), p. 450.

Table 19.3. Farafra Oasis. Mineralogical composition (by PXRD) of pottery samples, p. 454.

Table 19.4. Farafra Oasis. Chemical composition (by XRF) of pottery samples, p. 454.

Table 20.1. Hidden Valley village. Total counting of identified charcoals, p. 460.

Table 21.1. Radiocarbon chronology of Valley 1 at Sheikh el Obeiyid. The calibration has been run with INTCAL09 (Reimer et al. 2009), p. 478.
Foreword

This volume presents all the data collected during the cycle of research conducted by the Archaeological Mission in the Farafra Oasis between 1990 and 2005, only in part already published in preliminary form in separate articles. The book offers a comprehensive and complete edition of the data illustrated with an ample selection of images, essential for a full understanding. This monograph has been a long time in the making, due not only to the quantity of information and the number of essays that it contains, but also to the need to ensure the conformity of the documentation from our early years of research. The documents accompanying the text consist of a substantial graphic and photographic repertoire (geographical and geological maps, contour maps, stratigraphic sections, plans and distribution maps of artefacts), photographs of the environment, photomosaics of the main settlement, microphotographs of archaeological artefacts (lithic industry, bone and ostrich eggshell tools). Considerable space has been given to the illustration of the archaeological materials, documented almost exclusively using scale drawings. To these we should add the quantitative tables presenting a complete catalogue of the archaeological, archaeozoological, palaeobotanical and anthropological materials found.

We are proud that this amount of documents, allowing for a reconstruction of the prehistoric population profile of the Farafra Oasis and in particular the northwestern sector along the Wadi el Obeiyid, is now available to the scientific community. On this basis, the multidisciplinary essays contained in this volume provide a detailed picture of the peopling of the Farafra Oasis, hitherto one of the least well known within the Western Desert but particularly important during the middle Holocene, the period when climate conditions were most favourable, with later brief humid episodes even in the historic periods.

The results of this long-term research cycle, combined with data from the survey of the whole Wadi el Obeiyid still in progress, allow us to identify changes in the peopling of the oasis and to define various occupation phases. The new chronology for the Wadi el Obeiyid is this volume’s main achievement and, as demonstrated in the final chapter, is in complete agreement with the main cultural units of other territories in the Western Desert (fig. 21.6). On this chronological basis, the contacts between the latter and the peoples established on the Nile are brought into sharper focus. At Farafra, the first trend towards a prolonged presence in the area dates to the middle Holocene, with sites developing inside playa basins and reaching a considerable size. It is at this time that the economic profile of the oasis takes shape, with the first arrival of caprines to broaden the spectrum of resources exploited, hitherto aimed mainly at the management of spontaneous grasses and the consumption of game animals. The use of plants may have shaped the social structure, pushing human groups towards a more stable form of life and contributing to the development of increasing complexity. Contacts over greater distances, through which cultural features may have been transferred from the oasis to the societies of the Nile, date from the Wadi el Obeiyd B phase (from 5800 cal. BC) onwards. From this point onwards, people moved over greater distances, establishing contacts with the Nile Valley and with depressions further north such as Siwa and Fayum.

The occurrence of raw materials that were not locally available, alongside pottery inspired by models from the Nile, suggests a highly mobile pattern, including frequent contacts with the Nile Valley and beyond.

This type of enterprise can be successful only with the support of research Institutions. We wish to acknowledge the friendship, trust and support received from the Supreme Council of Egyptian Antiquities – now the Ministry of Antiquities under the Minister Mamdouh M. El-Damaty – and to thank the General Secretaries who have succeeded one another over the long period of research documented in this volume. Also fundamental was the support and financial backing of the Sapienza University of Rome with the Dipartimento di Scienze delle Antichità and the Facoltà di Scienze Umanistiche (now the Facoltà di Lettere e Filosofia), under the aegis of which our research project was carried out. In particular, we thank the staff of the Departmental Administrative Office and especially the Secretaries for their enormous contribution to the successful outcome of our archaeological missions and their administrative support.

No less valuable and concrete was the support received from major Italian Institutions. The Direzione Generale per la Promozione del Sistema Paese at the Ministry of Foreign Affairs, and the Ministry of Universities and Research, accompanied in the early years by grants from the National Research Council, provided annual funding that allowed us to plan and develop our work over the long term, thus ensuring its good progress. From the outset we have enjoyed unconditional support from Italy’s diplomatic Institutions in Egypt. We recall with gratitude the attention devoted to our Mission in the Farafra Oasis by the Italian Embassy under the leadership of Ambassadors Francesco Aloisi de Larderel, Antonio Badini and Claudio Pacifico. No less important was the assistance of the Italian Cultural Institute; a special mention goes to the generous help and friendship of the late Carla Burri. Finally, we thank the Archaeological Centre, which after its reopening and under the guidance first of Maria Casini, and later of Rosanna Pirelli, played an essential role in ensuring the presence of Italian Missions in Egypt and was a precious resource for relations with the Supreme Council of Antiquities and the Ministry of Antiquities.

We will always remember the support received from the inhabitants of the Farafra and Bahariya Oases who welcomed us warmly and participated directly in our fieldwork. The construction in recent years of a small Visitor Centre in the Qasr Farafra, with the assistance of the Italian mission, will allow the local population, especially schoolchildren, to understand the oasis’ important position in Egypt’s cultural development and its rich environmental and cultural heritage. We hope that in the future at least a small part of the collections from the Italian excavations, currently in storage at the Antiquities...
Storehouse in Dakhla, will be displayed in their original home, inside the Visitor Centre.

In the Farafra Oasis, we have always been able to rely on Abdurabbo Abdel Nour and his family during our fieldwork for both practical assistance and affectionate hospitality, as they welcomed us to their home every year and hosted the equipment for our camp. In Cairo, Mohamed and Ahmed Serwy and their families also helped us in the difficult and laborious process of logistical organization of the missions, in which they have always assisted us with great competence and sincere friendship.

Valuable assistance in Egypt was provided by the International Oil Egyptian Company, Egypt Branch (IOEC) which during the entire research project described here supplied safe transportation vehicles for our travel from Cairo and within the study area for members of our Mission. We wish to thank the Directors who have succeeded each other over all these years and the managers of the Transportation Department, Sharaf Mohamed Sami and Tarek Maarek for their help and collaboration.

Finally, the volume editors wish to express their gratitude to all those whose participation and contribution made our work possible: above all the members of the scientific team, many of whom also took an active part in our fieldwork and shared its hardships; the representatives in the field of the Supreme Council of Antiquities, now Ministry of Antiquities, who will be acknowledged individually in the volume but of whom we wish here to mention Meher Bashendi and Sayed Yamani, who followed our research from the outset; the students from the Sapienza University of Rome who worked with us in the field; the workmen, guides and drivers.

Our awareness of the importance of the archaeological complex brought to light in the Farafra Oasis and, at the same time, of its fragility, due to its exposure to both the deterioration of the physical environment and uncontrolled human activities makes us fear for its conservation. We ask that the area of the White Desert National Park, recently established under the aegis of the Egyptian-Italian Environmental Cooperation (EIECP), be extended to cover all sites of archaeological interest along the Wadi el Obeiyd. We hope that this book, with its complete documentation of the precious nature of the Farafra Oasis landscape and its archaeological heritage may help to promote more effective policies for its safeguard.

B.E.B. G.L.

The members of the Italian Archaeological Mission in the Farafra Oasis – Year 2006.
Editorial note and Acknowledgments

The dates used in this volume are all absolute dates mainly, though not exclusively, obtained with the radiocarbon method. Throughout the book these are indicated homogeneously as uncalibrated conventional radiocarbon dates (bp) to allow for immediate comparison with the major literature on the Western Desert, which has always presented dates in this form. The conventional date is almost always accompanied by the calibrated BC radiocarbon date calculated with IntCal09 (Reimer et al. 2009). For all the available dates, the calibrated BC values with a confidence interval of 1σ, and 2σ are reported in full in table 17.1.

For the toponyms of the areas investigated we have used the most reliable versions within the sometimes fairly wide range used locally; these are identical in all the various chapters.

Unless otherwise specified, all the photographs belong to the Archive of the Italian Archaeological Mission in the Farafra Oasis.

The original illustrations in chapters 6, 10, 15 (geosтратigraphic sections and photos) and figs.18.3-5 are by M.A.Hamdan; fig.12.2 by A.G.Fahmy; fig.14.1 by A.Gauthier; fig.19.6 by I.M.Muntoni; figs.20.1 and 20.2 by M.Cottini.

We wish to thank the following for their original images: C. de la Fuente (figs.1.4, a-b; 1.17 and front cover); R.R. Gebhart (fig.11/1.1); S.Oboukhoff and G.Petrullo (figs.11/8.1, 8.2, 8.3);

We also thank: Farafra Visitor Centre (fig.1.19, a-b); K.Wasylikowa (fig.3.11); K.Nelson (fig.3.12); M.M.A.McDonald and K.Walker (fig.3.13); M.M.A.McDonald (fig.3.14); E. Chassinat (fig.4.1); M.Gallinaro (fig.11/1.22); J.R. Harlan (fig.13.2, f); A.Siliotti (fig.21.2).

The drawings of archaeological finds are the painstaking and expert work of Giovanni Carboni of the Sapienza University of Rome and of Massimo Pennacchioni, Ente Cartografico dello Stato and University of Roma Tre, and we thank both for their exceptionally accurate and faithful drawings.

The archaeological materials are usually presented at a scale of 2:3 unless otherwise specified in the captions.

Massimo Pennacchioni and Fiorenza Piazzi (the latter free lance) were responsible for the digital reprocessing of the distribution maps of archaeological features and stratigraphic sections using the recordings made in the field.

They also reprocessed the materials initially produced by Luciano Narisi of the Dipartimento di Scienze dell’Antichità, of the Sapienza University of Rome.

The topographical survey of the El-Bahr and Hidden Valley areas are by Giulio Fratini and Francesco Moriconi (both of the Acanthus Company), Emanuele Mariotti (at that time University of Siena), and Augusto Palombini (National Council of Research, CNR).

We thank Ulisse Fabiani (at that time Sapienza University of Rome), for the processing of the overall topographical map of the Wadi el Obeiyid area.

The Farafra Oasis Mission’s GIS platform was developed by Ulisse Fabiani, Marina Gallinaro and Sabatino Laurenza (the two latter at that time Sapienza University of Rome).

The graphic edition of all the illustrations and the preparation of the tables included in this volume were by Massimo Pennacchioni and Fiorella Piazzi, under contract to the Dipartimento di Scienze dell’Antichità, Sapienza University of Rome.

The English texts were translated and revised initially by Sarah Court and later by Erika Louisa Milburn, both under contract to the Dipartimento di Scienze dell’Antichità. We want to address a particular thanks to Erika Louisa Milburn who worked with us for longer, collaborating on the preparation of this volume with the utmost care and professionalism.

We thank Marina Gallinaro and Ilaria Venir (at that time both Sapienza University of Rome), for their preliminary work on the editing of the texts.

The publication of this volume was financed by the funding provided to the research group directed by Barbara E. Barich by the Ministry of Universities and Research (Italian National PRIN Programme) and the Dipartimento di Scienze dell’Antichità, Sezione di Preistoria e Protostoria.